
AI505

Optimization

Derivatives and Gradients

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationOutline

1. Derivaties

2. Symbolic Differentiation

3. Numerical Differentiation

4. Automatic Differentiation

2



Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationDefinitions

• [a, b] = {x ∈ R | a ≤ x ≤ b} closed interval
(a, b) = {x ∈ R | a < x < b} open interval

• column vectors and matrices
scalar product: yTx =

∑n
i=1 yixi

• Ax column vector combination of the columns of A;
uTA row vector combination of the rows of A
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• linear combination

v1, v2 . . . , vk ∈ Rn

λλλ = [λ1, . . . , λk ]
T ∈ Rk

x = λ1v1 + · · ·+ λkvk =
k∑

i=1

λivi

moreover:

λλλ ≥ 0 conic combination

λλλT1 = 1 affine combination

λλλ ≥ 0 and λλλT1 = 1 convex combination

(
k∑

i=1

λi = 1

)
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• convex set: if x , y ∈ S and 0 ≤ λ ≤ 1 then λx + (1 − λ)y ∈ S

• convex function if its epigraph
{(x , y) ∈ R2 : y ≥ f (x)} is a convex set or if
f : Rn → R and
if ∀x , y ∈ Rn, α ∈ [0, 1] it holds that
f (αx + (1 − α)y) ≤ αf (x) + (1 − α)f (y)
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• For a set of points S ⊆ Rn

lin(S) linear hull (span)
cone(S) conic hull
aff(S) affine hull

conv(S) convex hull

conv(X ) =
{
λ1x1 + λ2x2 + . . .+ λnxn | xi ∈ X , λ1, . . . , λn ≥ 0 and

∑
i λi = 1

}
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Def. A norm is a function that assigns a length to a vector.

A function f is a norm if:
1. f (x) = 0 if and only if x is the zero vector
2. f (ax) = |a|f (x), such that lengths scale
3. f (x + y) ≤ f (x) + f (y), also known as trinagle inequality

Lp norms are commonly used set of norms paramterized by a scalar p ≥ 1:

∥x∥p = lim
ρ→p

(|x1|ρ + |x2|ρ + . . .+ |xn|ρ)
1
ρ

L∞ is also called the max norm, Chebyshev distance or chessboard distance.
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• Derivatives tell us which direction to search
for a solution

• Slope of Tanget Line

f ′(x) :=
df (x)
dx

(Leibniz notation)
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f (x +∆x) ≈ f (x) + f ′(x)∆x

f ′(x) =
∆x

∆x

11



Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationSymbolic Differentiation

12



Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationSymbolic Differentiation

import sympy as sp

# Define the variable
x = sp.symbols('x')

# Define the function
f = x**2 + x/2 - sp.sin(x)/x

# Compute the derivative
df_dx = sp.diff(f, x)

# Display the result
print("The symbolic derivative of f is:")
print(df_dx)

derivative.py
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• Gradient Vector

∇f (x) =
[
∂f (x)
∂x1

, ∂f (x)
∂x2

, . . . , ∂f (x)
∂xn

]

• Hessian Matrix

∇2f (x) =



∂2f (x)
∂x1 ∂x1

∂2f (x)
∂x1 ∂x2

. . . ∂2f (x)
∂x1 ∂xn

∂2f (x)
∂x1 ∂x2

∂2f (x)
∂x2 ∂x2

. . . ∂2f (x)
∂x2 ∂xn

...
. . .

...

∂2f (x)
∂x1 ∂xn

∂2f (x)
∂x2 ∂xn

. . . ∂2f (x)
∂xn ∂xn
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The directional derivative ∇s f (x) of a multivariate function f : Rn → R is the instantaneous rate
of change of f (x) as x = [x1, x2, . . . , xn] is moved with velocity s = [s1, s2, . . . , sn].

To compute ∇s f (x):

• compute ∇s f (x) =
∂f (x)
∂x1

s1 +
∂f (x)
∂x2

s2 + . . .+ ∂f (x)
∂xn

sn = ∇f (x)T s = ∇f (x) · s

• g(α) := f (x + αs) and then compute g ′(0)
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Common gradient:

∇xbTx =?

bTx = [b1x1 + b2x2 + . . .+ bnxn]

∂bTx
∂xi

= bi

∇xbTx = ∇xxTb = b
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Common gradient:

∇xxTAx =?

xTAx =



x1

x2

...

xn



T 

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann





x1

x2

...

xn


=



x1

x2

...

xn



T 

x1a11 + x2a12 + . . .+ xna1n

x1a21 + x2a22 + . . .+ xna2n

...

x1an1 + x2an2 + . . .+ xnann



=

x2
1a11 + x1x2a12 + . . .+ x1xna1n+

x1x2a21 + x2
2a22 + . . .+ x2xna2n+

...

x1xnan1 + x2xnan2 + . . .+ x2
n ann
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∂

∂xi
xTAx =

n∑
j=1

xj (aij + aji )

∇xxTAx =



∑n
j=1 xj (a1j + aj1)∑n
j=1 xj (a2j + aj2)

...∑n
j=1 xj (anj + ajn)


=



a11 + a11 a12 + a21 . . . a1n + an1

a21 + a12 a22 + a22 . . . a2n + an2
...

...
. . .

...

an1 + a1n an2 + a2n . . . ann + ann





x1

x2

...

xn


=
(
A+ AT

)
x
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Def. The smoothness of a function is a property measured by the number of continuous
derivatives (differentiability class) it has over its domain.

A function of class C k is a function of smoothness at least k ; that is, a function of class C k is a
function that has a kth derivative that is continuous in its domain.

The term smooth function refers to a C∞-function. However, it may also mean “sufficiently
differentiable” for the problem under consideration.
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• Let U be an open set on the real line and a function f defined on U with real values. Let k be
a non-negative integer.

• The function f is said to be of differentiability class C k if the derivatives f ′, f ′′, . . . , f (k)

exist and are continuous on U.

• If f is k-differentiable on U, then it is at least in the class C k−1 since f ′, f ′′, . . . , f (k−1) are
continuous on U.

• The function f is said to be infinitely differentiable, smooth, or of class C∞, if it has
derivatives of all orders (continous) on U.

• The function f is said to be of class Cω, or analytic, if f is smooth and its Taylor series
expansion around any point in its domain converges to the function in some neighborhood of
the point.

• There exist functions that are smooth but not analytic; Cω is thus strictly contained in C∞.
Bump functions are examples of functions with this property.
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Def. A symmetric matrix A is positive definite if xTAx is positive for all points other than the
origin: xTAx > 0 for all x ̸= 0.
Def. A symmetric matrix A is positive semidefinite if xTAx is always non-negative: xTAx ≥ 0 for
all x .

If the matrix A is positive definite in the function f (x) = xTAx , then f has a unique global
minimum.

Recall that the second order Taylor approximation of a twice-differentiable function f at x0 is

f (x) ≈ f (x0) +∇f (x0)
T (x − x0) +

1
2
(x − x0)

TH0(x − x0)

where H0 is the Hessian evaluated at x0. If (x − x0)
TH0(x − x0) has a unique global minimum,

then the overall approximation has a unique global minimum.
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• Symbolic derivatives can give valuable insight into the structure of the problem domain and, in
some cases, produce analytical solutions of extrema (e.g., solving for d

dx f (x) = 0) that can
eliminate the need for derivative calculation altogether.

• But they do not lend themselves to efficient runtime calculation of derivative values, as they
can get exponentially larger than the expression whose derivative they represent

25



Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationOutline

1. Derivaties

2. Symbolic Differentiation

3. Numerical Differentiation

4. Automatic Differentiation

26



Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationNumerical Differentiation

Finite Difference Method

• Neighboring points are used to approximate the derivative

• h too small causes numerical cancellation errors (square root or cube root of the machine
precision for floating point values: sys.float_info.epsilon difference between 1 and closest
representable number)
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from Taylor series expansion:

• forward difference has error term O(h), linear error as h approaches zero

• central difference has error term is O(h2)
28
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import sys
import numpy as np

def diff_forward(f, x: float, h: float=np.sqrt(sys.float_info.epsilon)) -> float:
return (f(x+h) - f(x))/h

def diff_central(f, x: float, h: float=np.cbrt(sys.float_info.epsilon)) -> float:
return (f(x+h/2) - f(x-h/2))/h

def diff_backward(f, x: float, h: float=np.sqrt(sys.float_info.epsilon)) -> float:
return (f(x) - f(x-h))/h

# Example usage
def func(x):

return x**2 + np.sin(x)

x0 = 1.0
print(f"The derivative at x = {x0} is {diff_forward(func, x0)}")

finite_diff.py 29
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Complex step method
Uses one single function evaluation after taking a step in the imaginary direction.
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import numpy as np

def diff_complex(f, x: float, h: float=1e-20) -> float:
return np.imag(f(x + h * 1j)) / h

# Example usage
def func(x):

return x**2 + np.sin(x)

x0 = 1.0
print(f"The derivative at x = {x0} is {diff_complex(func, x0)}")

complex_diff.py
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At small h, round off errors do-
minate, and at large h, trunca-
tion errors dominate.
Note the log transformation.
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• Approximation errors would be tolerated in a deep learning setting thanks to the
well-documented error resiliency of neural network architectures (Gupta et al., 2015).

• The O(n) complexity of numerical differentiation for a gradient in n dimensions is the main
obstacle to its usefulness in machine learning, where n can be as large as millions or billions in
state-of-the-art deep learning models (Shazeer et al., 2017).
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Automatic differentiation techniques are founded on the observation that any function is evaluated
by performing a sequence of simple elementary operations involving just one or two arguments at a
time:

• addition
• multiplication
• division
• power operation ab

• trigonometric functions
• exponential functions
• logarithmic
• chain rule:

d
dx

f (g(x)) =
d
dx

f ◦ g(x) = df
dg

dg
dx
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• Forward Accumulation is equivalent to expanding a function using the chain rule and
computing the derivatives inside-out

• Requires n-passes to compute n-dimensional gradient
• Example:

f (a, b) = ln(ab +max(a, 2))
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Computational graph: nodes are are operations and the edges are input-output relations. leaf
nodes of a computational graph are input variables or constants, and terminal nodes are values
output by the function
Forward accumulation for f (a, b) = ln(ab +max(a, 2))

∂b
∂a = ḃ Newton notation

dual numbers
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Computational graph: nodes are are operations and the edges are input-output relations. leaf
nodes of a computational graph are input variables or constants, and terminal nodes are values
output by the function
Forward accumulation for f (a, b) = ln(ab +max(a, 2))

∂b
∂a = ḃ Newton notation

dual numbers

for ∂f
∂b set ȧ = 0, ḃ = 1
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• Dual numbers can be expressed mathematically by including the abstract quantity ϵ, where ϵ2

is defined to be 0.

• Like a complex number, a dual number is written a+ bϵ where a and b are both real values.

• (a+ bϵ) + (c + dϵ) = (a+ c) + (b + d)ϵ
(a+ bϵ)× (c + dϵ) = (ac) + (ad + bc)ϵ

• by passing a dual number into any smooth function f , we get the evaluation and its derivative.
We can show this using the Taylor series:
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Note that

satisfies the rules of differentiation

Setting:

The chain rule follows:
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• Reverse accumulation is performed in a single run using two passes O(m · ops(f )) (forward
and back) for f : Rn → Rm

• Note: this is central to the backpropagation algorithm used to train neural networks because it
needs only one pass for the n-dimensional function to find the gradient.

• implemented through two different operation overloading functions (for forward and backward)

• Many open-source software implementations are available: eg, Tensorflow
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Forward implements:

Backward implements:
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Complementing each intermediate variable vi with an adjoint

v̄i =
∂yj
∂vi

which represents the sensitivity of a considered output yj with respect to changes in vi .
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y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)
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y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

O(n · ops(f ))
44
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O(m · ops(f ))
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• Derivatives are useful in optimization because they provide information about how to change a
given point in order to improve the objective function

• For multivariate functions, various derivative-based concepts are useful for directing the search
for an optimum, including the gradient, the Hessian, and the directional derivative

• computation of derivatives in computer programs can be classified into four categories:

1. manually working out derivatives and coding them (error prone and time consuming)

2. numerical differentiation using finite difference approximations
Complex step method can eliminate the effect of subtractive cancellation error when
taking small steps

3. symbolic differentiation using expression manipulation in computer algebra systems

4. automatic differentiation, (aka algorithmic differentiation)
forward and reverse accumulation on computational graphs
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