
AI505

Optimization

Derivatives and Gradients

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationOutline

1. Derivaties

2. Symbolic Differentiation

3. Numerical Differentiation

4. Automatic Differentiation

2

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationDefinitions

• [a, b] = {x ∈ R | a ≤ x ≤ b} closed interval
(a, b) = {x ∈ R | a < x < b} open interval

• column vectors and matrices
scalar product: yTx =

∑n
i=1 yixi

• Ax column vector combination of the columns of A;
uTA row vector combination of the rows of A

3

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationDefinitions

• linear combination

v1, v2 . . . , vk ∈ Rn

λλλ = [λ1, . . . , λk]
T ∈ Rk

x = λ1v1 + · · ·+ λkvk =
k∑

i=1

λivi

moreover:

λλλ ≥ 0 conic combination

λλλT1 = 1 affine combination

λλλ ≥ 0 and λλλT1 = 1 convex combination

(
k∑

i=1

λi = 1

)

4

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationDefinitions

• convex set: if x , y ∈ S and 0 ≤ λ ≤ 1 then λx + (1 − λ)y ∈ S

• convex function if its epigraph
{(x , y) ∈ R2 : y ≥ f (x)} is a convex set or if
f : Rn → R and
if ∀x , y ∈ Rn, α ∈ [0, 1] it holds that
f (αx + (1 − α)y) ≤ αf (x) + (1 − α)f (y)

5

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationDefinitions

• For a set of points S ⊆ Rn

lin(S) linear hull (span)
cone(S) conic hull
aff(S) affine hull

conv(S) convex hull

conv(X) =
{
λ1x1 + λ2x2 + . . .+ λnxn | xi ∈ X , λ1, . . . , λn ≥ 0 and

∑
i λi = 1

}

6

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationNorms

Def. A norm is a function that assigns a length to a vector.

A function f is a norm if:
1. f (x) = 0 if and only if x is the zero vector
2. f (ax) = |a|f (x), such that lengths scale
3. f (x + y) ≤ f (x) + f (y), also known as trinagle inequality

Lp norms are commonly used set of norms paramterized by a scalar p ≥ 1:

∥x∥p = lim
ρ→p

(|x1|ρ + |x2|ρ + . . .+ |xn|ρ)
1
ρ

L∞ is also called the max norm, Chebyshev distance or chessboard distance.

7

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic Differentiation

8

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationOutline

1. Derivaties

2. Symbolic Differentiation

3. Numerical Differentiation

4. Automatic Differentiation

9

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationDerivaties

• Derivatives tell us which direction to search
for a solution

• Slope of Tanget Line

f ′(x) :=
df (x)
dx

(Leibniz notation)

10

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationDerivatives

f (x +∆x) ≈ f (x) + f ′(x)∆x

f ′(x) =
∆x

∆x

11

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationSymbolic Differentiation

12

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationSymbolic Differentiation

import sympy as sp

Define the variable
x = sp.symbols('x')

Define the function
f = x**2 + x/2 - sp.sin(x)/x

Compute the derivative
df_dx = sp.diff(f, x)

Display the result
print("The symbolic derivative of f is:")
print(df_dx)

derivative.py

13

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationDerivatives in Multiple Dimensions

• Gradient Vector

∇f (x) =
[
∂f (x)
∂x1

, ∂f (x)
∂x2

, . . . , ∂f (x)
∂xn

]

• Hessian Matrix

∇2f (x) =

∂2f (x)
∂x1 ∂x1

∂2f (x)
∂x1 ∂x2

. . . ∂2f (x)
∂x1 ∂xn

∂2f (x)
∂x1 ∂x2

∂2f (x)
∂x2 ∂x2

. . . ∂2f (x)
∂x2 ∂xn

...
. . .

...

∂2f (x)
∂x1 ∂xn

∂2f (x)
∂x2 ∂xn

. . . ∂2f (x)
∂xn ∂xn

14

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationDirectional derivative

The directional derivative ∇s f (x) of a multivariate function f : Rn → R is the instantaneous rate
of change of f (x) as x = [x1, x2, . . . , xn] is moved with velocity s = [s1, s2, . . . , sn].

To compute ∇s f (x):

• compute ∇s f (x) =
∂f (x)
∂x1

s1 +
∂f (x)
∂x2

s2 + . . .+ ∂f (x)
∂xn

sn = ∇f (x)T s = ∇f (x) · s

• g(α) := f (x + αs) and then compute g ′(0)

15

Directional derivative

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationMatrix Calculus

Common gradient:

∇xbTx =?

bTx = [b1x1 + b2x2 + . . .+ bnxn]

∂bTx
∂xi

= bi

∇xbTx = ∇xxTb = b

17

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationMatrix Calculus

Common gradient:

∇xxTAx =?

xTAx =

x1

x2

...

xn

T

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

x1

x2

...

xn

=

x1

x2

...

xn

T

x1a11 + x2a12 + . . .+ xna1n

x1a21 + x2a22 + . . .+ xna2n

...

x1an1 + x2an2 + . . .+ xnann

=

x2
1a11 + x1x2a12 + . . .+ x1xna1n+

x1x2a21 + x2
2a22 + . . .+ x2xna2n+

...

x1xnan1 + x2xnan2 + . . .+ x2
n ann

18

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic Differentiation

∂

∂xi
xTAx =

n∑
j=1

xj (aij + aji)

∇xxTAx =

∑n
j=1 xj (a1j + aj1)∑n
j=1 xj (a2j + aj2)

...∑n
j=1 xj (anj + ajn)

=

a11 + a11 a12 + a21 . . . a1n + an1

a21 + a12 a22 + a22 . . . a2n + an2
...

...
. . .

...

an1 + a1n an2 + a2n . . . ann + ann

x1

x2

...

xn

=
(
A+ AT

)
x

19

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationSmoothness

Def. The smoothness of a function is a property measured by the number of continuous
derivatives (differentiability class) it has over its domain.

A function of class C k is a function of smoothness at least k ; that is, a function of class C k is a
function that has a kth derivative that is continuous in its domain.

The term smooth function refers to a C∞-function. However, it may also mean “sufficiently
differentiable” for the problem under consideration.

20

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationSmoothness

• Let U be an open set on the real line and a function f defined on U with real values. Let k be
a non-negative integer.

• The function f is said to be of differentiability class C k if the derivatives f ′, f ′′, . . . , f (k)

exist and are continuous on U.

• If f is k-differentiable on U, then it is at least in the class C k−1 since f ′, f ′′, . . . , f (k−1) are
continuous on U.

• The function f is said to be infinitely differentiable, smooth, or of class C∞, if it has
derivatives of all orders (continous) on U.

• The function f is said to be of class Cω, or analytic, if f is smooth and its Taylor series
expansion around any point in its domain converges to the function in some neighborhood of
the point.

• There exist functions that are smooth but not analytic; Cω is thus strictly contained in C∞.
Bump functions are examples of functions with this property.

21

Smoothness

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationPositive Definteness

Def. A symmetric matrix A is positive definite if xTAx is positive for all points other than the
origin: xTAx > 0 for all x ̸= 0.
Def. A symmetric matrix A is positive semidefinite if xTAx is always non-negative: xTAx ≥ 0 for
all x .

If the matrix A is positive definite in the function f (x) = xTAx , then f has a unique global
minimum.

Recall that the second order Taylor approximation of a twice-differentiable function f at x0 is

f (x) ≈ f (x0) +∇f (x0)
T (x − x0) +

1
2
(x − x0)

TH0(x − x0)

where H0 is the Hessian evaluated at x0. If (x − x0)
TH0(x − x0) has a unique global minimum,

then the overall approximation has a unique global minimum.

23

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationOutline

1. Derivaties

2. Symbolic Differentiation

3. Numerical Differentiation

4. Automatic Differentiation

24

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationSymbolic Derivatives

• Symbolic derivatives can give valuable insight into the structure of the problem domain and, in
some cases, produce analytical solutions of extrema (e.g., solving for d

dx f (x) = 0) that can
eliminate the need for derivative calculation altogether.

• But they do not lend themselves to efficient runtime calculation of derivative values, as they
can get exponentially larger than the expression whose derivative they represent

25

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationOutline

1. Derivaties

2. Symbolic Differentiation

3. Numerical Differentiation

4. Automatic Differentiation

26

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationNumerical Differentiation

Finite Difference Method

• Neighboring points are used to approximate the derivative

• h too small causes numerical cancellation errors (square root or cube root of the machine
precision for floating point values: sys.float_info.epsilon difference between 1 and closest
representable number)

27

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationDerivation

from Taylor series expansion:

• forward difference has error term O(h), linear error as h approaches zero

• central difference has error term is O(h2)
28

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic Differentiation

import sys
import numpy as np

def diff_forward(f, x: float, h: float=np.sqrt(sys.float_info.epsilon)) -> float:
return (f(x+h) - f(x))/h

def diff_central(f, x: float, h: float=np.cbrt(sys.float_info.epsilon)) -> float:
return (f(x+h/2) - f(x-h/2))/h

def diff_backward(f, x: float, h: float=np.sqrt(sys.float_info.epsilon)) -> float:
return (f(x) - f(x-h))/h

Example usage
def func(x):

return x**2 + np.sin(x)

x0 = 1.0
print(f"The derivative at x = {x0} is {diff_forward(func, x0)}")

finite_diff.py 29

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationNumerical Differentiation

Complex step method
Uses one single function evaluation after taking a step in the imaginary direction.

30

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic Differentiation

import numpy as np

def diff_complex(f, x: float, h: float=1e-20) -> float:
return np.imag(f(x + h * 1j)) / h

Example usage
def func(x):

return x**2 + np.sin(x)

x0 = 1.0
print(f"The derivative at x = {x0} is {diff_complex(func, x0)}")

complex_diff.py

31

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationNumerical Differentiation Error Comparison

At small h, round off errors do-
minate, and at large h, trunca-
tion errors dominate.
Note the log transformation.

32

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationNumerical Differentiation in ML

• Approximation errors would be tolerated in a deep learning setting thanks to the
well-documented error resiliency of neural network architectures (Gupta et al., 2015).

• The O(n) complexity of numerical differentiation for a gradient in n dimensions is the main
obstacle to its usefulness in machine learning, where n can be as large as millions or billions in
state-of-the-art deep learning models (Shazeer et al., 2017).

33

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationOutline

1. Derivaties

2. Symbolic Differentiation

3. Numerical Differentiation

4. Automatic Differentiation

34

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationAutomatic Differentiation

Automatic differentiation techniques are founded on the observation that any function is evaluated
by performing a sequence of simple elementary operations involving just one or two arguments at a
time:

• addition
• multiplication
• division
• power operation ab

• trigonometric functions
• exponential functions
• logarithmic
• chain rule:

d
dx

f (g(x)) =
d
dx

f ◦ g(x) = df
dg

dg
dx

35

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic Differentiation

• Forward Accumulation is equivalent to expanding a function using the chain rule and
computing the derivatives inside-out

• Requires n-passes to compute n-dimensional gradient
• Example:

f (a, b) = ln(ab +max(a, 2))

36

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationAutomatic Differentiation

Computational graph: nodes are are operations and the edges are input-output relations. leaf
nodes of a computational graph are input variables or constants, and terminal nodes are values
output by the function
Forward accumulation for f (a, b) = ln(ab +max(a, 2))

∂b
∂a = ḃ Newton notation

dual numbers

37

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationAutomatic Differentiation

Computational graph: nodes are are operations and the edges are input-output relations. leaf
nodes of a computational graph are input variables or constants, and terminal nodes are values
output by the function
Forward accumulation for f (a, b) = ln(ab +max(a, 2))

∂b
∂a = ḃ Newton notation

dual numbers

37

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationAutomatic Differentiation

Computational graph: nodes are are operations and the edges are input-output relations. leaf
nodes of a computational graph are input variables or constants, and terminal nodes are values
output by the function
Forward accumulation for f (a, b) = ln(ab +max(a, 2))

∂b
∂a = ḃ Newton notation

dual numbers

37

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationAutomatic Differentiation

Computational graph: nodes are are operations and the edges are input-output relations. leaf
nodes of a computational graph are input variables or constants, and terminal nodes are values
output by the function
Forward accumulation for f (a, b) = ln(ab +max(a, 2))

∂b
∂a = ḃ Newton notation

dual numbers

for ∂f
∂b set ȧ = 0, ḃ = 1

37

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationDual numbers

• Dual numbers can be expressed mathematically by including the abstract quantity ϵ, where ϵ2

is defined to be 0.

• Like a complex number, a dual number is written a+ bϵ where a and b are both real values.

• (a+ bϵ) + (c + dϵ) = (a+ c) + (b + d)ϵ
(a+ bϵ)× (c + dϵ) = (ac) + (ad + bc)ϵ

• by passing a dual number into any smooth function f , we get the evaluation and its derivative.
We can show this using the Taylor series:

38

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic Differentiation

Note that

satisfies the rules of differentiation

Setting:

The chain rule follows:

39

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationAutomatic Differentiation

• Reverse accumulation is performed in a single run using two passes O(m · ops(f)) (forward
and back) for f : Rn → Rm

• Note: this is central to the backpropagation algorithm used to train neural networks because it
needs only one pass for the n-dimensional function to find the gradient.

• implemented through two different operation overloading functions (for forward and backward)

• Many open-source software implementations are available: eg, Tensorflow

40

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic Differentiation

Forward implements:

Backward implements:

41

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic Differentiation

Complementing each intermediate variable vi with an adjoint

v̄i =
∂yj
∂vi

which represents the sensitivity of a considered output yj with respect to changes in vi .

42

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationExample

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

43

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationExample: Forward Accumulation

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

O(n · ops(f))
44

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationExample: Reverse Accumulation

O(m · ops(f))

45

Derivaties
Symbolic Differentiation
Numerical Differentiation
Automatic DifferentiationSummary

• Derivatives are useful in optimization because they provide information about how to change a
given point in order to improve the objective function

• For multivariate functions, various derivative-based concepts are useful for directing the search
for an optimum, including the gradient, the Hessian, and the directional derivative

• computation of derivatives in computer programs can be classified into four categories:

1. manually working out derivatives and coding them (error prone and time consuming)

2. numerical differentiation using finite difference approximations
Complex step method can eliminate the effect of subtractive cancellation error when
taking small steps

3. symbolic differentiation using expression manipulation in computer algebra systems

4. automatic differentiation, (aka algorithmic differentiation)
forward and reverse accumulation on computational graphs

46

	Derivaties
	Symbolic Differentiation
	Numerical Differentiation
	Automatic Differentiation

