
AI505

Optimization

Bracketing

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Outline

2

Bracketing

A derivative-free method to identify an interval containing a local minimum and then successively
shrinking that interval

3

Unimodality

There exists a unique optimizer x∗ such that f is monotonically decreasing for x ≤ x∗ and
monotonically increasing for x ≥ x∗

4

Finding an Initial Bracket

Given a unimodal function, the global minimum is guaranteed to be inside the interval [a, c] if
f (a) > f (b) < (c)

5

Finding an Initial Bracket

Example of bracket_minimum on a function

reverses direction between the first and second iteration and expands until a minimum is bracketed
in the fourth iteration.

6

For unimodal functions, when function evaluations are limited, what is the maximal shrinckage we
can achieve?

7

When restricted to only 2 function evaluations (queries) the most we can guarantee to shrink our
interval is by just under a factor of 2.

yeilds a factor of 3.

for ϵ → 0 yields a factor of just less than 2
8

When restricted to only 3 function evaluations (queries) the most we can guarantee to shrink our
interval is by a factor of 3.

9

Fibonacci Search

When restricted to n functions evaluations following the previous strategy, we are guaranteed to
shrink our interval by a factor of Fn+1.
Fibonacci numbers: sum of previous two,
1, 1, 2, 3, 5, 8, 13, ...

Fn =


0 if n = 0
1 if n = 1, 2
Fn−1 + Fn−2 otherwise

The length of every interval constructed can be
expressed in terms of the final interval times a
Fibonacci number.
- final, smallest interval has length In,
- second smallest interval has length In−1 = F3In
- third smallest interval has length In−2 = F4In,
and so forth.

10

Fibonacci Search Algorithm

For a unimodal function f in the interval [a, b], we want to shrink the interval within n iterations.
(At each iteration we want to shrink by a factor ϕ).

bk+1 − ak+1 =
Fn−k+1

Fn−k+2
(bk − ak)

Therefore:

bn − an =
F2

F3
(bn−1 − an−1)

=
F2

F3

F3

F4
. . .

Fn

Fn+1
(b1 − a1)

=
1

Fn+1
(b1 − a1)

Closed-form expression (Binet’s formula):

Fn =
ϕn − (1 − ϕ)n√

5
,

ϕ = (1 +
√

5)/2 ≈ 1.61803 is the golden ratio.

Fn+1

Fn
= ϕ

1 − sn+1

1 − sn
, s = (1 −

√
5)(1 +

√
5) ≈ −0.382

11

Suppose we have an unimodal function f in the interval [a, b] and a tolerance ϵ = 0.01. Let k = 1.

1. dk = ak +
Fn−k+1
Fn−k+2

(bk − ak)

2. if k ̸= n − 1:

ck = ak +

(
1 − Fn−k+1

Fn−k+2

)
(bk − ak)

otherwise: ck = dk + ϵ(ak − dk)

3. if f (ck) < f (dk): bk+1 = dk , dk+1 = ck , ak+1 = ak
otherwise: ak+1 = bk , bk+1 = ck , dk+1 = dk

4. k = k + 1, if k = n go to step 5, else go to step 2

5. return (ak , bk) if (ak < bk) else (bk , ak)

Fn

Fn+1
= ρn =

1 − sn

ϕ(1 − sn+1)
≈ 0.6

Golden Section Search

lim
n→∞

Fn+1

Fn
= lim

n→∞

1
ρn

= lim
n→∞

ϕ
1 − sn+1

1 − sn
= ϕ ≈ 1.61803

1
ϕ
≈ 0.618

15

Comparison

16

Comparison

17

Quadratic Fit Search

• Leverages ability to analytically minimize quadratic functions

• Iteratively fits quadratic function to three bracketing points

18

Quadratic Fit Search

• If a function is locally nearly quadratic, the minimum can be found after several steps

19

Using Linear Algebra

• We assume that the variable y is related to x ∈ Rn quadratically, so for some constants
b0, b1, b2:

y = b0 + b1x + b2x
2

• Given the set of m points (y1, x1,), . . . , (y3, x3) in the ideal case, we have that
yi = b0 + b1xi + b2x

2
i , for all i = 1, 2, 3. In matrix form:

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3



b0

b1

b2

 =


y1

y2

y3


This can be written as Az = y to emphasize that z are our unknowns and A and y are given.

20

In Python

In polynomial regression, the m × (n + 1) matrix A is called a Vandermonde matrix
(a matrix with entries aij = xn+1−j

i , j = 1..n + 1).
NumPy’s np.vander() is a convenient tool for quickly constructing a Vandermonde matrix, given
the values xi , i = 1..m, and the number of desired columns (n + 1).

>>> print(np.vander([2, 3, 5], 2))
[[2 1] # [[2**1, 2**0]
[3 1] # [3**1, 3**0]
[5 1]] # [5**1, 5**0]]

>>> print(np.vander([2, 3, 5, 4], 3))
[[4 2 1] # [[2**2, 2**1, 2**0]
[9 3 1] # [3**2, 3**1, 3**0]
[25 5 1] # [5**2, 5**1, 5**0]
[16 4 1]] # [4**2, 4**1, 4**0]

25

In Python

A = np.vander(x,4)

coeff = np.linalg.solve(A,y) ## Error!! Why?

B = A.T @ A
z = np.linalg.inv(B) @ A.T @ y

coeff = np.linalg.lstsq(A, y)[0]
np.allclose(z,coeff)

f=np.poly1d(coeff)
plt.plot(x, y, 'o', label='Original data', ↪→

↪→markersize=2)
plt.plot(x, f(x), 'r', label='Fitted line')
plt.legend()
plt.show()

ex2.py

26

Shubert-Piyavskii Method

• The Shubert-Piyavskii method is guaranteed to find the global minimum of any bounded
function

• but requires that the function be Lipschitz continuous

• A function is Lipschitz continuous if there is an upper bound on the magnitude of its
derivative. A function f is Lipschitz continuous on [a, b] if there exists an ℓ > 0 such that:

|f (x)− f (y)| ≤ ℓ|x − y |, ∀x , y ∈ [a, b]

27

28

Bisection Method

• Intermediate value theorem: If f is continuous on [a, b], and there is some y ∈ [f (a), f (b)],
then there exists at least one x ∈ [a, b], such that f (x) = y .

• Used in root-finding methods

• When applied to f ′(x), can be used to find minimum of f

• if sign(f ′(a)) ̸= sign(f ′(b)), or equivalently, f ′(a)f ′(b) ≤ 0 then [a, b] is guaranteed to contain
a zero.

29

Bisection method

• Cut the bracketed region [a, b] in half with every iteration

• Evaluate the midpoint (a+ b)/2

• form a new bracket from the midpoint and whichever side that continues to bracket a zero.

• Terminate after a fixed number of iterations.

• Guaranteed to converge within ϵ of x∗ within lg2(|b − a|/ϵ)

30

Summary

• Many optimization methods shrink a bracketing interval, including Fibonacci search, golden
section search, and quadratic fit search

• The Shubert-Piyavskii method outputs a set of bracketed intervals containing the global
minima, given the Lipschitz constant

• Root-finding methods like the bisection method can be used to find where the derivative of a
function is zero

31

