
AI505

Optimization

First-Order Methods

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark



Gradient Descent
Conjugate Descent
Accelerated DescentsOutline

1. Gradient Descent

2. Conjugate Descent

3. Accelerated Descents

2



Gradient Descent
Conjugate Descent
Accelerated DescentsDescent Direction Methods

How to select the descent direction?

• first-order methods that rely on gradient

• second-order methods that rely on Hessian information

Advantages of first order methods:
• cheap iterations: good for small and large scale optimization embedded optimization
• helpful because easy to warm restart

Limitations of first order methods:
• not hard to find challenging instances for them.
• can converge slowly.

3



Gradient Descent
Conjugate Descent
Accelerated DescentsOutline

1. Gradient Descent

2. Conjugate Descent

3. Accelerated Descents

4



Gradient Descent
Conjugate Descent
Accelerated DescentsGradient Descent

The steepest descent direction at xk , at kth iteration of a local descent iterative method, is
the one opposite to the gradient (gradient descent):

dk = − ∇f (xk)
∥∇f (xk)∥

Guaranteed to lead to improvement if:

• f is smooth
• step size is sufficiently small
• xk is not a stationary point (ie, ∇f (xk) = 0)

5



Gradient Descent
Conjugate Descent
Accelerated DescentsGradient Descent: Example

• Suppose we have

f (x) = x1x
2
2

• The gradient is ∇f = [x2
2 , 2x1x2]

• xk = [1, 2]

dk+1 = − ∇f (xk)
∥∇f (xk)∥

=
[−4,−4]√
16 + 16

=

[
− 1√

2
,− 1√

2

]

6



Gradient Descent
Conjugate Descent
Accelerated DescentsImplementation

class DescentMethod:
alpha: float

class GradientDescent(DescentMethod):
def __init__(self, f, grad, x, alpha):

self.alpha = alpha

def step(self, f, grad, x):
alpha, g = self.alpha, grad(x)
return x - alpha * g

7



Gradient Descent
Conjugate Descent
Accelerated DescentsGradient Descent

Theorem: The next direction is orthogonal to the current direction.

Proof:

α∗
k = argmin

α
f (xk + αdk)

∇f (xk + α∗
kdk) = ∇dk

f (xk) = 0 because α∗
k is minimum

∇f (xk + α∗
kdk)

Tdk = 0 because directional derivative: ∇s f (x) = ∇f (x)T s

dk+1 = − ∇f (xk + α∗
kdk)

∥∇f (xk + α∗
kdk)∥

gradient descent

dk+1 · dk = − ∇f (xk + α∗
kdk)

∥∇f (xk + α∗
kdk)∥

· dk = 0 dT
k+1dk = 0 =⇒ dk+1 ⊥ dk

8



Gradient Descent
Conjugate Descent
Accelerated DescentsGradient Descent: Example

2D Rosenbrock function

f (x , y) = (a− x)2 + b(y − x2)2

Narrow valleys not aligned with gradient can be a
problem

9



Gradient Descent
Conjugate Descent
Accelerated DescentsOutline

1. Gradient Descent

2. Conjugate Descent

3. Accelerated Descents

10



Gradient Descent
Conjugate Descent
Accelerated DescentsConjugate Gradient

[Hestenes and Stiefel, 1950s]

For A symmetric positive definite:

Ax = b ⇐⇒ minimize
x

f (x) def
=

1
2
xTAx − bTx

∇f (x) = Ax − b def
= r(x)

11



Gradient Descent
Conjugate Descent
Accelerated DescentsConjugate Direction

Def.: A set of nonzero vectors {d0,d1, . . . ,dℓ} is said to be conjugate with respect to the
symmetric positive definite matrix A if

dT
i Adj = 0, for all i ̸= j

(the vectors are linearly independent. Generally, not orthogonal.)

Theorem: Given an arbitrary x0 ∈ Rn and a set of conjugate vectors {d0,d1, . . . ,dn−1} the
sequence {xk} generated by

xk+1 = xk + αkdk

where αk is the analytical solution of min
α

f (xk + αdk) given by:

αk = − rTk dk

dT
k Adk

(aka, conjugate direction algorithm) converges to the solution x∗ of the linear system and
minimization problem in at most n steps.

12



Gradient Descent
Conjugate Descent
Accelerated Descents

Proof:

min
α

f (xk + αdk)

We can compute the derivative with respect to α:

∂

∂α
f (x + αd ) =

∂

∂α
(x + αd )TA(x + αd )− bT (x + αd )(+c)

= dTA(x + αd )− dTb

= dT (Ax − b) + αdTAd

Setting ∂f (x+αd )
∂α = 0 results in:

αk = −dT
k (Axk − b)
dT
k Adk

= −dT
k r(xk)
dT
k Adk

(1)

13



• Since the directions {dk} are linearly independent, they must span the whole space Rn. Hence,
there is a set of scalars σk such that:

x∗ − x0 = σ0d0 + σ1d1 + . . .+ σn−1dn−1

• By premultiplying this expression by dT
k A and using the conjugacy property, we obtain:

σk =
dT
k A(x∗ − x0)

dT
k Adk

(2)

• If xk is generated by conjugate direction algorithm, then we have

xk = x0 + α0d0 + α1d1 + . . .+ αkdk−1

• By premultiplying this expression by dT
k A and using the conjugacy property, we have that

dT
k A(xk − x0) = 0

• and therefore

dT
k A(x∗ − x0) = dT

k A(x∗ − xk + xk − x0) = dT
k A(x∗ − xk) + dT

k A(xk − x0) =

= dT
k A(x∗ − xk) = dT

k (b − Axk) = −dT
k rk .

• Using this result in (2) and comparing with (1) we conclude αk = σk .



Gradient Descent
Conjugate Descent
Accelerated Descents

If the matrix A is diagonal, the contours of the
function f (·) are ellipses whose axes are aligned
with the coordinate directions

If A is not diagonal, its contours are elliptical, but
they are usually not aligned with the coordinate
directions.
Transform the problem to make A diagonal and
minimize along the coordinate directions.

15



Gradient Descent
Conjugate Descent
Accelerated DescentsConjugate Gradient Method

• The conjugate gradient method is a conjugate direction method with the property: In
generating its set of conjugate vectors, it can compute a new vector dk by using only the
previous vector dk−1. Hence, little storage and computation requirements.

dk = −rk + βkdk−1

where βk is to be determined such that dk−1 and dk must be conjugate with respect to A. By
premultiplying by dT

k−1A and imposing that dT
k−1Adk = 0 we find that

βk =
rTk Adk−1

dT
k−1Adk−1

• Larger values of β indicate that the previous descent direction contributes more strongly.
• d0 is commonly chosen to be the steepest descent direction at x0

• Advantage with respect to steepest descent: implicitly reuses previous information about the
function and thus better convergence.

16



Gradient Descent
Conjugate Descent
Accelerated DescentsAlgorithm CG

Basic version:

Input: f , x0
Output: x∗
Set r0 ← Ax0 − b,d0 ← r0, k ← 0;
while rk ̸= 0 do

αk ← −dT
k r(xk )
dT
k Adk

;

xk+1 ← xk + αkdk ;
rk+1 ← Axk+1 − b;

βk+1 ←
rTk+1Adk

dT
k Adk

;

dk+1 ← −rk+1 + βk+1dk ;
k ← k + 1;

Computationally improved version:

Input: f , x0
Output: x∗
Set r0 ← Ax0 − b,d0 ← r0, k ← 0;
while rk ̸= 0 do

αk ← − r(xk )T r(xk )
dT
k Adk

;

xk+1 ← xk + αkdk ;
rk+1 ← rk + αkAdk ;

βk+1 ←
rTk+1rk+1

rTk rk
;

dk+1 ← −rk+1 + βk+1dk ;
k ← k + 1;

• we never need to know the vectors x , r , and d for more than the last two iterations.

• major computational tasks: the matrix–vector product Adk , inner products dT
k Adk and

rTk+1rk+1, and three vector sums 17



Gradient Descent
Conjugate Descent
Accelerated DescentsNonLinear Conjugate Gradient Methods

• The conjugate gradient method can be applied to nonquadratic functions as well.

• Smooth, continuous functions behave like quadratic functions close to a local minimum

• but! we do not know the value of A that best approximates f around xk . Instead, several
choices for βk tend to work well:

• Two changes:
• αk is computed by solving an approximate line search
• the residual r , (it was simply the gradient of f ), must be replaced by the gradient of the

nonlinear objective f .

18



Gradient Descent
Conjugate Descent
Accelerated DescentsNonLinear Conjugate Gradient Methods

Fletcher-Reeves Method:
Input: f , x0
Output: x∗
Evaluate f0 = f (x0),∇f0 = ∇f (x0);
Set d0 ← −∇f0, k ← 0;
while ∇fk ̸= 0 do

Compute αk by line search and set
xk+1 ← xk + αkdk ;

Evaluate ∇fk+1;

βFR
k+1 ←

∇f Tk+1∇fk+1

∇f Tk ∇fk
;

dk+1 ← −∇fk+1 + βFR
k+1dk ;

k ← k + 1;

Polak-Ribière:
Input: f , x0
Output: x∗
Evaluate f0 = f (x0),∇f0 = ∇f (x0);
Set d0 ← −∇f0, k ← 0;
while ∇fk ̸= 0 do

Compute αk by line search and set
xk+1 ← xk + αkdk ;

Evaluate ∇fk+1;

βPR
k+1 ←

∇f Tk+1(∇fk+1−∇fk )

∇f Tk ∇fk
;

dk+1 ← −∇fk+1 + βFR
k+1dk ;

k ← k + 1;

PR with:

β+
k+1 = max{βPR

k+1, 0}
becomes PR+ and guaranteed to converge (satisfies first Wolfe conditions).

19



Gradient Descent
Conjugate Descent
Accelerated Descents

The conjugate gradient method with the Polak-Ribière update. Gradient descent is shown in gray.

20



Gradient Descent
Conjugate Descent
Accelerated DescentsOutline

1. Gradient Descent

2. Conjugate Descent

3. Accelerated Descents

21



Gradient Descent
Conjugate Descent
Accelerated DescentsAccelerated Descents

• Addresses common convergence issues
• Some functions have regions with very small gradients (flat surface) where gradient descent

gets stuck

22



Gradient Descent
Conjugate Descent
Accelerated DescentsMomentum

Rosenbrock function with b = 100

Momentum overcomes these issues by replicating the effect of physical momentum

23



Gradient Descent
Conjugate Descent
Accelerated DescentsMomentum

Momentum update equations:

vk+1 = βvk − α∇f (xk)
xk+1 = xk + vk+1

import numpy as np

class Momentum(DescentMethod):
alpha: float # learning rate
beta: float # momentum decay
v: np.array # momentum

def __init__(self, alpha, beta, f, grad, x):
self.alpha = alpha
self.beta = beta
self.v = np.zeros_like(x)

def step(self, grad, x):
self.v = self.beta * self.v - self.alpha * ↪→

↪→grad(x)
return x + self.v

24



Gradient Descent
Conjugate Descent
Accelerated DescentsNesterov Momentum

Issue of momentum: steps do not slow down enough at the bottom of a valley, overshoot.

Nesterov Momentum update equations:

vk+1 = βvk − α∇f (xk + βvk)
xk+1 = xk + vk+1

25



Gradient Descent
Conjugate Descent
Accelerated DescentsAdagrad

• Instead of using the same learning rate for all components of x ,
Adaptive Subgradient method (Adagrad) adapts the learning rate for each component of x .
For each component of x , the update equation is

xi,k+1 = xi,k −
α

ϵ+
√
si,k
∇fi (xk)

where

si,k =
k∑

j=1

(∇fi (xj))2

ϵ ≈ 1× 10−8, α = 0.01

• components of s are strictly nondecreasing, hence learning rate decreases over time
26



Gradient Descent
Conjugate Descent
Accelerated DescentsRMSProp

• Extends Adagrad to avoid monotonically decreasing learning rate by maintaining a decaying
average of squared gradients

ŝk+1 = γŝk + (1− γ)
(
∇f(xk)⊙∇f (xk)

)
, γ ∈ [0, 1], ⊙ element-wise product

Update Equation

xi,k+1 = xi,k −
α

ϵ+
√
ŝi,k
∇fi (xk)

= xi,k −
α

ϵ+ RMS(∇fi (xk))
∇fi (xk)

root mean square: For n values {x1, x2, . . . , xn}

xRMS =

√
1
n
(x1

2 + x2
2 + · · ·+ xn2).

27



Gradient Descent
Conjugate Descent
Accelerated DescentsAdaDelta

Also extends Adagrad to avoid monotonically decreasing learning rate
Modifies RMSProp to eliminate learning rate parameter entirely

xi,k+1 = xi,k −
RMS(∆xi )

ϵ+ RMS(∇fi (x))
∇fi (xk)

28



Gradient Descent
Conjugate Descent
Accelerated DescentsAdam

• The adaptive moment estimation method (Adam), adapts the learning rate to each
parameter.

• stores both an exponentially decaying gradient like momentum and an exponentially decaying
squared gradient like RMSProp and Adadelta

• At each iteration, a sequence of values are computed

Biased decaying momentum vk+1 = βvk − α∇f (xk)
Biased decaying squared gradient sk+1 = γsk + (1− γ) (∇f (xk)⊙∇f (xk))

Corrected decaying momentum v̂k+1 = vk+1/(1− γv ,k)

Corrected decaying squared gradient ŝk+1 = sk+1/(1− γs,k)

Next iterate xk+1 = xk + αv̂k+1/(ϵ+
√

ŝk+1)

• Defaults: α = 0.001, γv = 0.9, γs = 0.999, ϵ = 1× 10−8
29



Gradient Descent
Conjugate Descent
Accelerated DescentsAdamax

Same as Adam, but based on the max-norm L∞.

sk+1 = γ∞sk + (1− γ∞) (∥∇f (xk)∥∞)

= max (γsk , ∥∇f (xk)∥∞)

30



Gradient Descent
Conjugate Descent
Accelerated DescentsNadam

Nadam

• Nesterov-accelerated Adaptive Moment Estimation

• Adam is basically RMSProp with momentum

• We have seen that Nesterov is often more efficient

• Welcome to Nadam: Adam which uses the Nesterov momentum.

31



Gradient Descent
Conjugate Descent
Accelerated DescentsHypergradient Descent

• Learning rate determines how sensitive the method is to the gradient signal.

• Many accelerated descent methods are highly sensitive to hyperparameters such as learning
rate.

• Applying gradient descent to a hyperparameter of an underlying descent method is called
hypergradient descent

• Requires computing the partial derivative of the objective function with respect to the
hyperparameter

32



Gradient Descent
Conjugate Descent
Accelerated DescentsHypergradient Descent

33



Gradient Descent
Conjugate Descent
Accelerated DescentsSummary

• Gradient descent follows the direction of steepest descent.

• The conjugate gradient method can automatically adjust to local valleys.

• Descent methods with momentum build up progress in favorable directions.

• A wide variety of accelerated descent methods use special techniques to speed up descent.

• Hypergradient descent applies gradient descent to the learning rate of an underlying descent
method.

34


	Gradient Descent
	Conjugate Descent
	Accelerated Descents

