AI505 Optimization

First-Order Methods

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Gradient Descent Conjugate Descent Accelerated Descents

1. Gradient Descent

2. Conjugate Descent

3. Accelerated Descents

Descent Direction Methods

How to select the descent direction?

- first-order methods that rely on gradient
- second-order methods that rely on Hessian information

Advantages of first order methods:

- cheap iterations: good for small and large scale optimization embedded optimization
- helpful because easy to warm restart

Limitations of first order methods:

- not hard to find challenging instances for them.
- can converge slowly.

Outline

Gradient Descent Conjugate Descent Accelerated Descents

1. Gradient Descent

2. Conjugate Descent

3. Accelerated Descents

Gradient Descent

The steepest descent direction at x_k , at *k*th iteration of a local descent iterative method, is the one opposite to the gradient (gradient descent):

$$oldsymbol{d}_k = -rac{
abla f(oldsymbol{x}_k)}{\|
abla f(oldsymbol{x}_k)\|}$$

Guaranteed to lead to improvement if:

- *f* is smooth
- step size is sufficiently small
- \mathbf{x}_k is not a stationary point (ie, $\nabla f(\mathbf{x}_k) = 0$)

Gradient Descent: Example

Gradient Descent Conjugate Descent Accelerated Descents

• Suppose we have

 $f(\mathbf{x}) = x_1 x_2^2$

- The gradient is $\nabla f = [x_2^2, 2x_1x_2]$
- $x_k = [1, 2]$

$$d_{k+1} = -\frac{\nabla f(\mathbf{x}_k)}{\|\nabla f(\mathbf{x}_k)\|} = \frac{[-4, -4]}{\sqrt{16+16}} = \left[-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right]$$

Implementation

```
class DescentMethod:
    alpha: float
class GradientDescent(DescentMethod):
    def __init__(self, f, grad, x, alpha):
        self.alpha = alpha
    def step(self, f, grad, x):
        alpha, g = self.alpha, grad(x)
        return x - alpha * g
```

Gradient Descent

<u>Theorem</u>: The next direction is orthogonal to the current direction.

Proof:

$$\alpha_k^* = \underset{\alpha}{\operatorname{argmin}} f(\mathbf{x}_k + \alpha \mathbf{d}_k)$$

$$\nabla f(\mathbf{x}_{k} + \alpha_{k}^{*}\mathbf{d}_{k}) = \nabla_{\mathbf{d}_{k}}f(\mathbf{x}_{k}) = 0$$

$$\nabla f(\mathbf{x}_{k} + \alpha_{k}^{*}\mathbf{d}_{k})^{T}\mathbf{d}_{k} = 0$$

$$\mathbf{d}_{k+1} = -\frac{\nabla f(\mathbf{x}_{k} + \alpha_{k}^{*}\mathbf{d}_{k})}{\|\nabla f(\mathbf{x}_{k} + \alpha_{k}^{*}\mathbf{d}_{k})\|}$$

$$\mathbf{d}_{k+1} \cdot \mathbf{d}_{k} = -\frac{\nabla f(\mathbf{x}_{k} + \alpha_{k}^{*}\mathbf{d}_{k})}{\|\nabla f(\mathbf{x}_{k} + \alpha_{k}^{*}\mathbf{d}_{k})\|} \cdot \mathbf{d}_{k} = 0$$

because α_k^* is minimum because directional derivative: $\nabla_s f(\mathbf{x}) = \nabla f(\mathbf{x})^T \mathbf{s}$

gradient descent

$$\boldsymbol{d}_{k+1}^{T}\boldsymbol{d}_{k}=0\implies \boldsymbol{d}_{k+1}\perp \boldsymbol{d}_{k}$$

Gradient Descent: Example

2D Rosenbrock function

$$f(x,y) = (a-x)^2 + b(y-x^2)^2$$

Narrow valleys not aligned with gradient can be a $_{\underset{\mathbf{x}^{\ast}}{\overset{\mathbf{y}^{\ast}}}{\overset{\mathbf{y}^{\ast}}}{\overset{\mathbf{y}^{\ast}}}{\overset{\mathbf{y}^{\ast}}}{\overset{\mathbf{y}^{\ast}}}{\overset{\mathbf{y}^{\ast}}}{\overset{\mathbf{y}^{\ast}}}{\overset{\mathbf{y}^{\ast}}}{\overset{\mathbf{y}^{\ast}}{\overset{\mathbf{y}^{\ast}}}}}}}}}}}}}}}$ problem

9

Outline

Gradient Descent Conjugate Descent Accelerated Descents

1. Gradient Descent

2. Conjugate Descent

3. Accelerated Descents

Conjugate Gradient

Gradient Descent Conjugate Descent Accelerated Descents

[Hestenes and Stiefel, 1950s]

For *A* symmetric positive definite:

$$A\mathbf{x} = \mathbf{b} \iff \min_{\mathbf{x}} \operatorname{minimize} f(\mathbf{x}) \stackrel{\text{def}}{=} \frac{1}{2} \mathbf{x}^{\mathsf{T}} A \mathbf{x} - \mathbf{b}^{\mathsf{T}} \mathbf{x}$$

$$abla f(\mathbf{x}) = A\mathbf{x} - \mathbf{b} \stackrel{def}{=} \mathbf{r}(\mathbf{x})$$

Conjugate Direction

<u>Def.</u>: A set of nonzero vectors $\{d_0, d_1, \dots, d_\ell\}$ is said to be **conjugate** with respect to the symmetric positive definite matrix A if

 $\boldsymbol{d}_i^T A \boldsymbol{d}_j = 0, \qquad \text{for all } i \neq j$

(the vectors are linearly independent. Generally, not orthogonal.)

<u>Theorem</u>: Given an arbitrary $\mathbf{x}_0 \in \mathbb{R}^n$ and a set of conjugate vectors $\{\mathbf{d}_0, \mathbf{d}_1, \dots, \mathbf{d}_{n-1}\}$ the sequence $\{\mathbf{x}_k\}$ generated by

 $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k$

where α_k is the analytical solution of $\min_{\alpha} f(\mathbf{x}_k + \alpha \mathbf{d}_k)$ given by:

$$\alpha_k = -\frac{\boldsymbol{r}_k^T \boldsymbol{d}_k}{\boldsymbol{d}_k^T \boldsymbol{A} \boldsymbol{d}_k}$$

(aka, conjugate direction algorithm) converges to the solution x^* of the linear system and minimization problem in at most n steps.

Proof:

 $\min_{\alpha} f(\boldsymbol{x}_k + \alpha \boldsymbol{d}_k)$

We can compute the derivative with respect to α :

$$\frac{\partial}{\partial \alpha} f(\mathbf{x} + \alpha \mathbf{d}) = \frac{\partial}{\partial \alpha} (\mathbf{x} + \alpha \mathbf{d})^T A(\mathbf{x} + \alpha \mathbf{d}) - \mathbf{b}^T (\mathbf{x} + \alpha \mathbf{d})(+c)$$
$$= \mathbf{d}^T A(\mathbf{x} + \alpha \mathbf{d}) - \mathbf{d}^T \mathbf{b}$$
$$= \mathbf{d}^T (A\mathbf{x} - \mathbf{b}) + \alpha \mathbf{d}^T A \mathbf{d}$$

Setting $\frac{\partial f(\mathbf{x} + \alpha \mathbf{d})}{\partial \alpha} = \mathbf{0}$ results in:

$$\alpha_k = -\frac{\boldsymbol{d}_k^T(A\boldsymbol{x}_k - \boldsymbol{b})}{\boldsymbol{d}_k^T A \boldsymbol{d}_k} = -\frac{\boldsymbol{d}_k^T \boldsymbol{r}(\boldsymbol{x}_k)}{\boldsymbol{d}_k^T A \boldsymbol{d}_k}$$

(1)

Since the directions {*d_k*} are linearly independent, they must span the whole space ℝⁿ. Hence, there is a set of scalars σ_k such that:

 $\boldsymbol{x}^* - \boldsymbol{x}_0 = \sigma_0 \boldsymbol{d}_0 + \sigma_1 \boldsymbol{d}_1 + \ldots + \sigma_{n-1} \boldsymbol{d}_{n-1}$

• By premultiplying this expression by $d_k^T A$ and using the conjugacy property, we obtain:

$$\sigma_k = \frac{\boldsymbol{d}_k^T \mathcal{A}(\boldsymbol{x}^* - \boldsymbol{x}_0)}{\boldsymbol{d}_k^T \mathcal{A} \boldsymbol{d}_k}$$
(2)

• If x_k is generated by conjugate direction algorithm, then we have

 $\mathbf{x}_k = \mathbf{x}_0 + \alpha_0 \mathbf{d}_0 + \alpha_1 \mathbf{d}_1 + \ldots + \alpha_k \mathbf{d}_{k-1}$

- By premultiplying this expression by $d_k^T A$ and using the conjugacy property, we have that $d_k^T A(\mathbf{x}_k - \mathbf{x}_0) = 0$
- \bullet and therefore

$$d_k^T A(\mathbf{x}^* - \mathbf{x}_0) = d_k^T A(\mathbf{x}^* - \mathbf{x}_k + \mathbf{x}_k - \mathbf{x}_0) = d_k^T A(\mathbf{x}^* - \mathbf{x}_k) + d_k^T A(\mathbf{x}_k - \mathbf{x}_0) = d_k^T A(\mathbf{x}^* - \mathbf{x}_k) = d_k^T (\mathbf{b} - A\mathbf{x}_k) = -d_k^T \mathbf{r}_k.$$

• Using this result in (2) and comparing with (1) we conclude $\alpha_k = \sigma_k$.

If the matrix A is diagonal, the contours of the function $f(\cdot)$ are ellipses whose axes are aligned with the coordinate directions

If A is not diagonal, its contours are elliptical, but they are usually not aligned with the coordinate directions.

Transform the problem to make A diagonal and minimize along the coordinate directions.

Conjugate Gradient Method

• The conjugate gradient method is a conjugate direction method with the property: In generating its set of conjugate vectors, it can compute a new vector d_k by using only the previous vector d_{k-1} . Hence, little storage and computation requirements.

$$\boldsymbol{d}_k = -\boldsymbol{r}_k + \beta_k \boldsymbol{d}_{k-1}$$

where β_k is to be determined such that d_{k-1} and d_k must be conjugate with respect to A. By premultiplying by $d_{k-1}^T A$ and imposing that $d_{k-1}^T A d_k = 0$ we find that

$$\beta_k = \frac{\boldsymbol{r}_k^T \boldsymbol{A} \boldsymbol{d}_{k-1}}{\boldsymbol{d}_{k-1}^T \boldsymbol{A} \boldsymbol{d}_{k-1}}$$

- Larger values of β indicate that the previous descent direction contributes more strongly.
- d_0 is commonly chosen to be the steepest descent direction at x_0
- Advantage with respect to steepest descent: implicitly reuses previous information about the function and thus better convergence.

Algorithm CG

Basic version:

Input: f. x₀ Output: x^* Set $\mathbf{r}_0 \leftarrow A\mathbf{x}_0 - b$, $\mathbf{d}_0 \leftarrow \mathbf{r}_0$, $k \leftarrow 0$; while $\mathbf{r}_{\mu} \neq 0$ do $\alpha_k \leftarrow -\frac{\boldsymbol{d}_k^T \boldsymbol{r}(\boldsymbol{x}_k)}{\boldsymbol{d}_k^T A \boldsymbol{d}_k};$ $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha_k \mathbf{d}_k;$ $\mathbf{r}_{k+1} \leftarrow A\mathbf{x}_{k+1} - \mathbf{b}$ $\beta_{k+1} \leftarrow \frac{\mathbf{r}_{k+1}^T A \mathbf{d}_k}{\mathbf{d}_k^T A \mathbf{d}_k};$ $d_{k+1} \leftarrow -\mathbf{r}_{k+1} + \beta_{k+1} d_k;$ $k \leftarrow k+1;$

Computationally improved version:

Input: f, \mathbf{x}_0 Output: x^* Set $\mathbf{r}_0 \leftarrow A\mathbf{x}_0 - b$, $\mathbf{d}_0 \leftarrow \mathbf{r}_0$, $k \leftarrow 0$: while $\mathbf{r}_k \neq 0$ do $\alpha_k \leftarrow -\frac{\mathbf{r}(\mathbf{x}_k)^T \mathbf{r}(\mathbf{x}_k)}{\mathbf{d}^T A \mathbf{d}_k};$ $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha_k \mathbf{d}_k;$ $\mathbf{r}_{k+1} \leftarrow \mathbf{r}_k + \alpha_k A \mathbf{d}_k;$ $\beta_{k+1} \leftarrow \frac{\mathbf{r}_{k+1}^T \mathbf{r}_{k+1}}{\mathbf{r}_{k}^T \mathbf{r}_{k}};$ $\mathbf{d}_{k+1} \leftarrow -\mathbf{r}_{k+1} + \beta_{k+1} \mathbf{d}_k; \\
 k \leftarrow k+1;$

- we never need to know the vectors x, r, and d for more than the last two iterations.
- major computational tasks: the matrix-vector product Ad_k , inner products $d_k^T Ad_k$ and $r_{k+1}^T r_{k+1}$, and three vector sums

NonLinear Conjugate Gradient Methods

- The conjugate gradient method can be applied to nonquadratic functions as well.
- Smooth, continuous functions behave like quadratic functions close to a local minimum
- but! we do not know the value of A that best approximates f around x_k. Instead, several choices for β_k tend to work well:
- Two changes:
 - α_k is computed by solving an approximate line search
 - the residual *r*, (it was simply the gradient of *f*), must be replaced by the gradient of the nonlinear objective *f*.

NonLinear Conjugate Gradient Methods

Fletcher-Reeves Method:

Input: f, \mathbf{x}_0 Output: x^* Evaluate $f_0 = f(\mathbf{x}_0), \nabla f_0 = \nabla f(\mathbf{x}_0)$: Set $\mathbf{d}_0 \leftarrow -\nabla f_0, k \leftarrow 0$: while $\nabla f_k \neq 0$ do Compute α_k by line search and set $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha_k \mathbf{d}_k$ Evaluate ∇f_{k+1} ; $\beta_{k+1}^{FR} \leftarrow \frac{\nabla f_{k+1}^T \nabla f_{k+1}}{\nabla f_k^T \nabla f_k};$ $egin{aligned} oldsymbol{d}_{k+1} &\leftarrow -
abla^k oldsymbol{f}_{k+1} + eta^{FR}_{k+1} oldsymbol{d}_k; \ k &\leftarrow k+1; \end{aligned}$

Polak-Ribière: Input: f, \mathbf{x}_0 Output: x^* Evaluate $f_0 = f(\mathbf{x}_0) \cdot \nabla f_0 = \nabla f(\mathbf{x}_0)$: Set $\mathbf{d}_0 \leftarrow -\nabla f_0, k \leftarrow 0$: while $\nabla f_k \neq 0$ do Compute α_k by line search and set $\mathbf{x}_{k+1} \leftarrow \mathbf{x}_k + \alpha_k \mathbf{d}_k$: Evaluate ∇f_{k+1} ; $\beta_{k+1}^{PR} \leftarrow \frac{\nabla f_{k+1}^T (\nabla f_{k+1} - \nabla f_k)}{\nabla f_k^T \nabla f_k};$

PR with:

 $\beta_{k+1}^+ = \max\{\beta_{k+1}^{PR}, \mathbf{0}\}$

becomes PR⁺ and guaranteed to converge (satisfies first Wolfe conditions).

The conjugate gradient method with the Polak-Ribière update. Gradient descent is shown in gray.

Outline

Gradient Descent Conjugate Descent Accelerated Descents

1. Gradient Descent

2. Conjugate Descent

3. Accelerated Descents

Accelerated Descents

- Addresses common convergence issues
- Some functions have regions with very small gradients (flat surface) where gradient descent gets stuck

Momentum

Momentum overcomes these issues by replicating the effect of physical momentum

Momentum

Momentum update equations:

```
\mathbf{v}_{k+1} = \beta \mathbf{v}_k - \alpha \nabla f(\mathbf{x}_k)\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{v}_{k+1}
```

import numpy as np

```
class Momentum(DescentMethod):
  alpha: float # learning rate
  beta: float # momentum decay
  v: np.array # momentum
  def __init__(self, alpha, beta, f, grad, x):
    self.alpha = alpha
    self.beta = beta
    self.v = np.zeros_like(x)
  def step(self, grad, x):
    self.v = self.beta * self.v - self.alpha * \hookrightarrow
        \rightarrowgrad(x)
    return x + self.v
```

Nesterov Momentum

Issue of momentum: steps do not slow down enough at the bottom of a valley, overshoot.

Nesterov Momentum update equations:

 $\boldsymbol{v}_{k+1} = \beta \boldsymbol{v}_k - \alpha \nabla f(\boldsymbol{x}_k + \beta \boldsymbol{v}_k)$

 $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{v}_{k+1}$

Adagrad

Instead of using the same learning rate for all components of *x*,
 Adaptive Subgradient method (Adagrad) adapts the learning rate for each component of *x*.
 For each component of *x*, the update equation is

$$x_{i,k+1} = x_{i,k} - \frac{\alpha}{\epsilon + \sqrt{s_{i,k}}} \nabla f_i(\mathbf{x}_k)$$

where

$$s_{i,k} = \sum_{j=1}^{k} \left(\nabla f_i(\mathbf{x}_j) \right)^2$$
$$\epsilon \approx 1 \times 10^{-8}, \alpha = 0.01$$

• components of \boldsymbol{s} are strictly nondecreasing, hence learning rate decreases over time

RMSProp

• Extends Adagrad to avoid monotonically decreasing learning rate by maintaining a decaying average of squared gradients

 $\hat{s}_{k+1} = \gamma \hat{s}_k + (1 - \gamma) \left(
abla f(\mathbf{x}_k) \odot
abla f(\mathbf{x}_k)
ight), \qquad \gamma \in [0, 1], \qquad \odot ext{ element-wise product}$

Update Equation

$$\begin{aligned} x_{i,k+1} &= x_{i,k} - \frac{\alpha}{\epsilon + \sqrt{\hat{s}_{i,k}}} \nabla f_i(\mathbf{x}_k) \\ &= x_{i,k} - \frac{\alpha}{\epsilon + RMS(\nabla f_i(\mathbf{x}_k))} \nabla f_i(\mathbf{x}_k) \end{aligned}$$

root mean square: For *n* values $\{x_1, x_2, \ldots, x_n\}$

$$x_{\text{RMS}} = \sqrt{\frac{1}{n} (x_1^2 + x_2^2 + \dots + x_n^2)}.$$

Also extends Adagrad to avoid monotonically decreasing learning rate Modifies RMSProp to eliminate learning rate parameter entirely

$$x_{i,k+1} = x_{i,k} - rac{RMS(\Delta x_i)}{\epsilon + RMS(
abla f_i(m{x}))}
abla f_i(m{x}_k)$$

- The adaptive moment estimation method (Adam), adapts the learning rate to each parameter.
- stores both an exponentially decaying gradient like momentum and an exponentially decaying squared gradient like RMSProp and Adadelta
- At each iteration, a sequence of values are computed

Biased decaying momentum Biased decaying squared gradient Corrected decaying momentum Corrected decaying squared gradient Next iterate $\begin{aligned} \mathbf{v}_{k+1} &= \beta \mathbf{v}_k - \alpha \nabla f(\mathbf{x}_k) \\ \mathbf{s}_{k+1} &= \gamma \mathbf{s}_k + (1 - \gamma) \left(\nabla f(\mathbf{x}_k) \odot \nabla f(\mathbf{x}_k) \right) \\ \hat{v}_{k+1} &= \mathbf{v}_{k+1} / (1 - \gamma_{v,k}) \\ \hat{s}_{k+1} &= \mathbf{s}_{k+1} / (1 - \gamma_{s,k}) \\ \mathbf{x}_{k+1} &= \mathbf{x}_k + \alpha \hat{v}_{k+1} / (\epsilon + \sqrt{\hat{s}_{k+1}}) \end{aligned}$

• Defaults: $\alpha = 0.001, \gamma_v = 0.9, \gamma_s = 0.999, \epsilon = 1 \times 10^{-8}$

Adamax

Same as Adam, but based on the max-norm L_{∞} .

 $\begin{aligned} \boldsymbol{s}_{k+1} &= \gamma^{\infty} \boldsymbol{s}_{k} + (1 - \gamma^{\infty}) \left(\left\| \nabla f(\boldsymbol{x}_{k}) \right\|_{\infty} \right) \\ &= \max \left(\gamma \boldsymbol{s}_{k}, \left\| \nabla f(\boldsymbol{x}_{k}) \right\|_{\infty} \right) \end{aligned}$

Nadam

Nadam

- Nesterov-accelerated Adaptive Moment Estimation
- Adam is basically RMSProp with momentum
- We have seen that Nesterov is often more efficient
- Welcome to Nadam: Adam which uses the Nesterov momentum.

- Learning rate determines how sensitive the method is to the gradient signal.
- Many accelerated descent methods are highly sensitive to hyperparameters such as learning rate.
- Applying gradient descent to a hyperparameter of an underlying descent method is called hypergradient descent
- Requires computing the partial derivative of the objective function with respect to the hyperparameter

Hypergradient Descent

- Gradient descent follows the direction of steepest descent.
- The conjugate gradient method can automatically adjust to local valleys.
- Descent methods with momentum build up progress in favorable directions.
- A wide variety of accelerated descent methods use special techniques to speed up descent.
- Hypergradient descent applies gradient descent to the learning rate of an underlying descent method.