
AI505

Optimization

Optimization in Machine Learning

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Introduction

Large-scale machine learning represents a distinctive setting in which traditional nonlinear
optimization techniques typically falter

• How do optimization problems arise in machine learning applications and what makes them
challenging?

• What have been the most successful optimization methods for large-scale machine learning
and why?

• What recent advances have been made in the design of algorithms and what are open
questions in this research area?

2

Two Case Studies

• Logistic regression or support vector machines
convex optimization problems

• deep neural networks
highly nonlinear and nonconvex problems

3

Text Classification via Convex Optimization
Task: determining whether a text document is one that discusses politics.

• set of examples {(x1, y1), . . . , (xn, yn)}, where for each i ∈ {1, . . . , n}
xi represents the features of a text document (e.g., the words it includes)
yi is a label indicating whether the document belongs (yi = 1) or not (yi = −1) to a particular
class.

• h prediction function

• measure performance: count how often the program prediction h(xi) differs from the correct
prediction yi .

• minimize empirical risk misclassification

Rn(h) =
1
n

n∑
i=1

I[h(xi) ̸= yi], where I[A] =

{
1 if A is true,
0 otherwise

4

Text Classification via Convex Optimization

Choosing between prediction functions belonging to a given class by comparing them using
cross-validation procedures that involve splitting the examples into three disjoint subsets:

• a training set, optimizing the choice of h by minimizing Rn

• a validation set, generalized performance of each of these remaining candidates is then
estimated using the validation set, the best performing of which is chosen as the selected
function.

• a testing set, only used to estimate the generalized performance of this selected function

5

Formalization

• feature vector x ∈ Rd whose components are associated with a prescribed set of vocabulary
words; ∥x∥ = 1

• h(x ;w , τ) = wTx − τ , w ∈ Rd and τ ∈ Rd

• sign(h(x ;w , τ) discountinuous

• continuous approximation through a loss function that measures a cost for predicting h when
the true label is y ;
e.g., one may choose a log-loss function of the form

L(h, y) = log(1 + exp−hy).

min
(w ,τ)∈Rd×R

L(h(xi ;w , τ), yi) + λ ∥w∥2
2

solve for various λ and choose on the validation set
6

Deep Neural Networks

Deep Neural Networks: represent hypotheses as computation graphs with tunable weights and
compute the gradient of the loss function with respect to those weights in order to fit the training
data.
https://playground.tensorflow.org/

7

https://playground.tensorflow.org/

Perceptual Tasks via Deep Neural Networks
• Prediction function h whose value is computed by applying successive transformations to a

given input vector xi ∈ Rd0 .

• These transformations are made in layers. A canonical fully connected layer performs the
computation

x (j)
i = s(Wjx

(j−1)
i + bj) ∈ Rdj

• where x (0)
i = xi , the matrix Wj ∈ Rdj×dj−1 and vector bj ∈ Rdj contain the jth layer

parameters, and s is a component-wise nonlinear activation function

• s(x) = 1/(1 + exp(−x)) and the hinge function s(x) = max(0, x) (often called a rectified
linear unit (ReLU) in this context)

• x (J)
i leads to the prediction function value h(xi ;w), w = {(W1, b1), . . . , (WJ , bJ)}.

• leads to highliy non-linear and non-convex:

min
w∈Rd

1
N

n∑
i=1

L(h(xi ;w), yi)
8

• The gradient with respect to w is made of simple expressions that can be computed by
passing information back through the network from the output units.

• the gradient computations for any feedforward computation graph have the same structure as
the underlying computation graph.

• gradients can be computed by the chain rule and the algorithmic method of automatic
differentiation

• back-propagation in deep learning is simply an application of reverse mode differentiation,
which applies the chain rule “from the outside in”

9

Speech recognition

• A contemporary fully connected neural network for speech recognition typically has five to
seven layers. This amounts to tens of millions of parameters to be optimized,

• the training may require up to thousands of hours of speech data (representing hundreds of
millions of training examples) and weeks of computation on a supercomputer

10

convolutional neural networks

Convolutional neural networks (CNNs) have proved to be very effective for computer vision and
signal processing tasks

ImageNet Large Scale Visual Recognition Competition (ILSVRC) with five convolutional layers and
three fully connected layers

11

Image Recognition

• input x (j−1)
i is intepreted as a multichannel image of 224 × 224 pixels.

• convolutional layers, wherein the parameter matrix Wj is a circulant matrix

• product Wjx
(j−1)
i computes the convolution of the image by a trainable filter

• activation functions are piecewise linear functions and can perform more complex operations
that may be interpreted as image rectification, contrast normalization, or subsampling.

• output scores represent the odds that the image belongs to each of 1,000 categories.

• 60 million parameters

• training on a few million labeled images takes a few days on a dual GPU workstation.

12

Fundamentals

• Joint probability distribution function P(x , y) that simultaneously represents the distribution
P(x) of inputs as well as the conditional probability P(y | x) of the label y being appropriate
for an input x .

• One should seek to find h that yields a small expected risk of misclassification over all possible
inputs, i.e., an h that minimizes

R(h) = P[h(x) ̸= y] = E [I[h(x) ̸= y]],

which is variational since we are optimizing over a set of functions (the h), and is stochastic
since the objective function involves an expectation.

• without explicit knowledge of P the only tractable option is to construct a surrogate problem
that relies solely on the examples (xi , yi)

n
i=1: minimize the empirical risk

Tasks:
• how to choose the parameterized family of prediction functions H and

• how to determine (and find) the particular prediction function h ∈ H that is optimal.
13

Choice of Prediction Function

1. H should contain prediction functions that are able to achieve a low empirical risk over the
training set, so as to avoid bias or underfitting the data. (rich family of functions or by using a
priori knowledge to select a well-targeted family)

2. the gap between expected risk and empirical risk, namely, R(h)− Rn(h), should be small over
all h ∈ H. (increases with rich family of functions)

3. H should be effciently solvable in the corresponding optimization problem (the richer the
family of functions and/or the larger training set the more complex the problem becomes)

14

Choice of Prediction Function

Uniform laws of large numbers and the Hoeffding inequality gurantee that with probability at least
1 − η

sup
h∈H

|R(h)− Rn(h)| ≤ O

(√
1
2n

log

(
2
η

)
+

dH
n

log

(
n

dH

))

- dH Vapnik-Chervonenkis (VC) dimension (measure of capacity of separating points)
- not the same as numer of parameters

• for a fixed dH, uniform convergence is obtained by increasing the number of training points n.

• for a fixed n, the gap can widen for larger dH.

In practice it is typically easier to estimate with cross-validation experiments.

15

Structural Risk Minimization

• Rather than choosing a generic family of prediction functions one chooses a structure, i.e., a
collection of nested function families.

• structure can be formed as a collection of subsets of a given family H: given a preference
function Ω, choose various values of a hyperparameter C , according to each of which one
obtains the subset HC

def
= {h ∈ H : ω(h) ≤ C}. (C is, eg, degree of a polynomial model

function, dimension of an inner layer of a DNN)

min Rn(h)

subject to Ω(h) ≤ C

Regularized empirical risk

Rn(h) + λΩ(h)

validation set is then used to estimate the
expected risk corresponding to each C and to
choose one. 16

Structural Risk Minimization
Another approach:

• employ an algorithm for minimizing Rn, but terminate the algorithm early, i.e., before an
actual minimizer of Rn is found.
The hyperparameter is played by the training time allowed

• often essential due to computational budget limitations.

17

Formal Optimization Problem Statements

• We do not consider a variational optimization problem over H,

• instead we assume that the prediction function h has a fixed form and is parameterized by a
real vector w ∈ Rd

• for some given h(·; ·) : Rdx × Rd → Rdy , we consider the family of prediction functions
H def

= {h(·;w) : w ∈ Rd}

• aim to find h ∈ H that minimizes a given loss function L : Rdx × Rd → Rdy , L(h(x ;w), y)

• Ideally, the expected loss is defined over any input-output pair. Assuming probability
distribution P(x , y) represents the true input-output relationship:

R(w) =

∫
Rdx×Rdy

L(h(x ;w), y)dP(x , y) = E [L(h(x ;w), y)] Expected Risk

18

Formal Optimization Problem Statements

• In practice, one seeks the solution of a problem that involves an estimate of the expected risk
R.

• In supervised learning, we have access (either all-at-once or incrementally) to a set of n ∈ N
independently drawn input-output samples {(xi , yi)}ni=1 ⊆ Rdx ×Rdy , with which we define the
empirical risk function Rn : Rd → R by

Rn(w)
def
=

1
n

n∑
i=1

L(h(xi ;w), yi) Empirical Risk

(note that before we used misclassification error while now L.)

19

