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Analysis of SGSimplified Notation

Let ξ be a random seed or the realization of a single (or a set of) sample (x , y).
For a given (w , ξ) let f (w ; ξ) be the composition of the loss function L and the prediction function
h
Then:

R(w) = Eξ[f (w ; ξ)] Expected Risk

Let {ξ[i ]}ni=1 be realizations of ξ corresponding to {(xi , yi )}ni=1 and fi (w)
def
= f (w ; ξ[i ])

Then:

Rn(w)
def
=

1
n

n∑
i=1

fi (w) Empirical Risk
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Analysis of SGStochastic vs Batch Optimization Methods
Reduction to minimizing Rn, with w0 ∈ Rd given (deterministic problem)
Stochastic Approach: Stochastic Gradient (Robbins and Monro, 1951)

wk+1 ← wk − αk∇fik (wk)

ik is chosen randomly from {1, . . . , n}, αk > 0.
• very cheap iteration only on one sample.
• {wk} is a stochastic process determined by the random sequence {ik}.
• the direction might not always be a descent but if it is a descent direction in expectation,

then the sequence {wk} can be guided toward a minimizer of Rn.
Batch Approach: batch gradient, steepest descent, full gradient method:

wk+1 ← wk − αk∇Rn(wk) = wk −
αk

n

n∑
i=1

∇fi (wk)

• more expensive
• can use all deterministic gradient-based optimization methods
• the sum structure opens up to parallelization

Analogues in simulation: stochastic approximation (SA) and sample average approximation (SAA)
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Analysis of SGStochastic Gradient
• In case of redundancy using all the sample data in every iteration is inefficient
• Comparison of the performance of a batch L-BFGS method on number of evaluations of a

sample gradient ∇fik (wk).
• Each set of n consecutive accesses is called an epoch.
• The batch method performs only one step per epoch while SG performs n steps per epoch.

the fast initial improvement achieved by SG, followed by a
drastic slowdown after 1 or 2 epochs, is common in practice

SG more sensitive to αk and starting point

if more epochs, batch may become better
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Analysis of SGRate of Convergence

Let {xk} be a sequence in Rn that converges to x∗.
The convergence is said to be Q-linear (quotient-linear) if there is a constant r ∈ (0, 1) such that

∥xk+1 − x∗∥
∥xk − x∗∥

≤ r for all k sufficiently large

ie, the distance to the solution x∗ decreases at each iteration by at least a constant factor bounded
away from 1 (ie, < 1).

Example:
sequence {1 + (0.5)k} converges Q-linearly to 1, with rate r = 0.5.
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Analysis of SGRate of Convergence
The convergence is said to be Q-superlinear if

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 0

Example: the sequence {1 + k−k} converges superlinearly to 1.

An even more rapid convergence rate:
The convergence is said to be Q-quadratic if

∥xk+1 − x∗∥
∥xk − x∗∥2

≤ M for all k sufficiently large

where M is a positive constant, not necessarily less than 1.
Example: the sequence {1 + (0.5)2

k}.
The values of r and M depend not only on the algorithm but also on the properties of the
particular problem.
Regardless of these values a quadratically convergent sequence will always eventually converge
faster than a linearly convergent sequence.
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Analysis of SGRate of Convergence

Superlinear convergence (quadratic, cubic, quartic, etc) is regarded as fast and desirable, while
sublinear convergence is usually impractical.

• Quasi-Newton methods for unconstrained optimization typically converge Q-superlinearly

• Newton’s method converges Q-quadratically under appropriate assumptions.

• Steepest descent algorithms converge only at a Q-linear rate, and when the problem is
ill-conditioned the convergence constant r in is close to 1.
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Analysis of SGRate of Convergence

A slightly weaker form of convergence:
overall rate of decrease in the error, rather than the decrease over each individual step of the
algorithm.
We say that convergence is R-linear (root-linear) if there is a sequence of nonnegative scalars {vk}
such that

∥xk − x∗∥ ≤ {vk} for all k , and {vk} converges Q-linearly to zero.
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Analysis of SGTheoretical Motivations

• a batch approach can minimize Rn at a fast rate; e.g., if Rn is strongly convex. A batch
gradient method, then there exists a constant ρ ∈ (0, 1) such that, for all k ∈ N, the training
error follows linear convergence

Rn(wk)− R∗
n ≤ O(ρk),

• rate of convergence of a basic stochastic method is slower than for a batch gradient; e.g., if Rn

is strictly convex and each ik is drawn uniformly from {1, . . . , n}, then for all k ∈ N, SG
satisfies the sublinear convergence property

E[Rn(wk)− R∗
n ] = O(1/k).

neither the per-iteration cost nor the right-hand side depends on the sample set size n

• in a stochastic optimization setting, SG yields for the expected risk the same convergence rate
once substituted ∇fik (wk) replaced by ∇f (wk ; ξk) with each ξk drawn independently
according to the distribution P

E[R(wk)− R∗] = O(1/k).
If n≫ k up to iteration k minimizing Rn same as minimizing R
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Analysis of SGBeyond SG: Noise Reduction and Second-Order Methods

- on horizontal axis methods that try to improve
rate of convergence
- on vertical axis, methods that try to overcome
non-linearity and ill-conditioning

Mini-batch Approach small subset of samples, call it Sk ⊆ {1, . . . , n}, chosen randomly in each
iteration:

wk+1 ← wk −
αk

|Sk |
∑
i∈S

∇fi (wk)

due to the reduced variance of the stochastic gradient estimates, the method is easier to tune in
terms of choosing the stepsizes {αk}.
dynamic sample size and gradient aggregation methods, both of which aim to improve the rate of
convergence from sublinear to linear
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Analysis of SGOutline

1. Analysis of SG
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Analysis of SGTheoretical Analysis — Preliminaries
convergence properties and worst-case iteration complexity bounds.

F (w) =

{
Rn(w) = 1

n

∑n
i=1 fi (w) Empirical Risk

R(w) = Eξ[f (w ; ξ)] Expected Risk

sampling uniformly with replacement from training set ⇝ Rn

sampling with P(ξ) with replacement from training set ⇝ R.

Procedure SG(...);
Choose an initial iterate w0;
for k = 0, 1, . . . do

Generate a realization of the random variable xik ;
Compute a stochastic vector g(wk , ξk);
Choose a stepsize αk > 0;
Set the new iterate as wk+1 ← wk − αkg(wk , ξk);
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Analysis of SGTheoretical Analysis — Preliminaries

ξk may represent a single sample or a mini-batch
g may represent a stochastic gradient (biased estimator of ∇F (wk) or a stochastic Netwon or
quasi-Newton direction).

g(wk , ξk) =


∇f (wk ; ξk)

1
nk

∑nk
i=1∇f (wk ; ξk,i )

Hk
1
nk

∑nk
i=1∇f (wk ; ξk,i )

Hk a symmetric positive definite scaling matrix
αk fixed stepsize or diminishing stepsizes
wk can have influence on the sample selection (active learning)
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Analysis of SGConvergence Analysis – Assumptions

• Assumption 4.1 Lipschitz-continuous objective gradients
• Assumption 4.3 First and second moment limits. The objective function and SG (Algorithm

4.1) satisfy the following:

• objective function to be bounded below by a scalar Finf over the region explored by the algorithm.
• in expectation, the vector −g(wk , ξk) is a direction of sufficient descent for F from wk with a

norm comparable to the norm of the gradient
• the variance of g(wk , ξk) is restricted, but in a relatively minor manner.

Varξk [g(wk , ξk)] ≤ M +MV ∥∇F (wk)∥2
2 , M > 0,MV > 0 for all k ∈ N

• Lemma: Markovian manner in the sense that wk+1 is a random variable that depends only on
the iterate wk , the seed ξk , and the stepsize αk and not on any past iterates.
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Analysis of SGConvergence Analysis – Assumptions

• Assumption 4.5 Strong convexity.
The objective function F : Rd → R is strongly convex in that there exists a constant c > 0
such that

F (w̄) ≥ F (w) +∇F (w)T (w̄ −w) +
1
2
c ∥w̄ −w∥22 for all (w̄ ,w) ∈ Rd × Rd

or equivalently if there exists c > 0:

∇2F (w) ⪰ c

(for univariate case: f ′′(w) ≥ c), ie, grows at least quadratically.
Hence, F has a unique minimizer, denoted as w∗ ∈ Rd with F ∗ def

= F (w∗).
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Analysis of SGConvergence Analysis – Results

• Theorem 4.6 (Strongly Convex Objective, Fixed Stepsize).

• Theorem 4.7 (Strongly Convex Objective, Diminishing Stepsizes)
SG with diminishing step size converges in expectation.

• role of strong convexity
• role of initial point
• trade-offs of mini batches

• Theorem 4.8 (Nonconvex Objective, Fixed Stepsize)
• While one cannot bound the expected optimality gap as in the convex case, inequality (4.28b)

bounds the average norm of the gradient of the objective function observed on {wk} visited
during the first K iterations.

• classical result for the full gradient method applied to nonconvex functions, namely, that the sum
of squared gradients remains finite, implying that

{∥∇F (wk)∥2} → 0.
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Analysis of SG

• Theorem 4.9 (Nonconvex Objective, Diminishing Stepsizes)

• for the SG method with diminishing stepsizes, the expected gradient norms cannot stay bounded
away from zero

• the weighted average norm of the squared gradients converges to zero even if the gradients are
noisy, (i.e., if M > 0 in the Variance upper bounding assumption) one can still conclude that the
expected gradient norms cannot asymptotically stay far from zero.

17



Analysis of SGComputational Complexity Analysis

• consider a big data scenario with an infinite supply of training examples, but a limited
computational time budget. what type of algorithm — e.g., a simple SG or batch gradient
method — would provide the best guarantees in terms of achieving a low expected risk?

• w∗ ∈ argminR(w); wn ∈ argminRn(w), w̃n approximate empirical risk minimizer returned by
a given optimization algorithm at Tmax

• The tradeoffs associated with this scenario can be formalized as choosing the family of
prediction functions H, the number of examples n, and the optimization accuracy
ϵ
def
= E [Rn(w̃n)− Rn(wn)] in order to minimize the total error:

minimize
H,n∈N,ϵ

E [R(w̃n)] =

Eapp(H)︷ ︸︸ ︷
R(w∗)+

Eest(H, n)︷ ︸︸ ︷
E [R(wn)− R(w∗)]+

Eopt(H, n, ϵ)︷ ︸︸ ︷
E [R(w̃n)− R(wn)]

subject to T (n, ϵ) ≤ Tmax
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Analysis of SGComputational Complexity Analysis

• SG, with its sublinear rate of convergence, is more efficient for large-scale learning than (full,
batch) gradient-based methods that have a linear rate of convergence.

• reducing the optimization error Eopt(H, n, ϵ) (evaluated with respect to R rather than Rn) one
might need to make up for the additional computing time by: (i) reducing the sample size n,
potentially increasing the estimation error Eest(H, n); or (ii) simplifying the function family H,
potentially increasing the approximation error Eapp(H).
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Analysis of SGComputational Complexity Analysis

Keep fixed H carrying out a worst-case analysis on the influence of the sample size n and
optimization tolerance ϵ, which together only influence the estimation and optimization errors.

A stochastic optimization algorithm performs better that batch stochastic in terms of expected error

Large gap between asymptotical behavior and practical realities.
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Analysis of SGRemarks

• Fragility of the Asymptotic Performance of SG
ok if objective function it includes a squared L2-norm regularizer (related to constant c) but
regularization parameter should be lowered when the number of samples increases.

• SG good for GPUs but ill-conditioning erodes efficiency of SG

• Distributed computing not working with basic SG because of too frequent updates of w , more
promising with mini-batch.

• Alternatives with Faster Convergence: minimizing empirical risk Rn there is information from
previous gradients.
- gradient aggregation methods
- dynamic sampling approach
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