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Noise Reduction Methods
• SG as the ideal optimization approach for large-scale applications.

• SG suffers from the adverse effect of noisy gradient estimates.
- when fixed stepsizes are used it prevents SG from converging to the solution
- when a diminishing stepsize sequence {αk} is employed it leads to a slow, sublinear rate of
convergence.

• Remedies:
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Overview

Achieve linear rate of convergence to the optimal value using a fixed stepsize.

• Dynamic sampling methods achieve noise reduction by gradually increasing the mini-batch
size used in the gradient computation, thus employing increasingly more accurate gradient
estimates as the optimization process proceeds.

• Gradient aggregation methods improve the quality of the search directions by storing
gradient estimates corresponding to samples employed in previous iterations, updating one (or
some) of these estimates in each iteration, and defining the search direction as a weighted
average of these estimates.

Rate of convergence remains sublinear but reduces variance of iterates

• iterate averaging methods maintain an average of iterates computed during the
optimization process and employes a more aggressive stepsize sequence–of order O(1/

√
k)

rather than O(1/k).
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Reducing Noise at a Geometric Rate
rate of decrease in noise that allows a stochastic-gradient-type method to converge at a linear rate.

Consequence of Lipschitz assumption with ℓ constant:

Eξk [F (wk+1)]− F (wk) ≤ −αk∇F (wk)
T Eξk [g(wk , ξk)] +

1
2
α2
kℓEξk [∥g(wk , ξk)∥22]

We want to make the left hand side small (sequence of expected optimality gaps).

Theorem 5.1 (Strongly Convex Objective, Noise Reduction)
The SG method with a fixed stepsize ᾱ and previous assumptions plus a variance of the stochastic
vectors that decreases geometrically

Varξk [g(wk , ξk)] ≤ Mζk−1

has a sequence of expected optimality gaps that vanishes at a linear rate:

E[F (wk)− F ∗] ≤ ωρk−1
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Dynamic Sample Size Methods

Can we design efficient optimization methods attaining the critical bound on the variance?

Mini-batch stochastic gradient:

wk+1 ← wk − ᾱg(wk , ξk)

where the stochastic directions are computed for some τ > 1 as

g(wk , ξk)
def
=

1
nk

∑
i∈Sk

∇f (wk ; ξk,i ) with nk
def
= |Sk | = ⌈τ k−1⌉.

the mini-batch size increases geometrically as a function of the iteration counter k

Corollary 5.2. Let {wk} be the iterates generated with unbiased gradient estimates, i.e.,
Eξk,i [∇f (wk ; ξk,i )] = ∇F (wk) for all k ∈ N and i ∈ Sk . Then, the variance condition is satisfied,
and if all other assumptions of Theorem 5.1 hold, then the expected optimality gap vanishes linearly.
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Dynamic Sample Size Methods

Note: we described a method as linearly convergent but the per-iteration cost increases without
bound.

Recall that SG method needs T (n, ϵ) ≤ 1/ϵ evaluations to gurantee E[F (wk)− F ∗] ≤ ϵ

Theorem 5.3 Suppose that the dynamic sampling SG method is run with a stepsize ᾱ satisfying
“some” bounds and some τ . In addition, suppose that all previous Assumptions hold. Then, the
total number of evaluations of a stochastic gradient of the form ∇f (wk ; ξk,i ) required to obtain
E[F (wk)− F ∗] ≤ ϵ is O(ϵ−1).
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Dynamic Sample Size Guidelines

Given the rate of convergence of a batch optimization algorithm on strongly convex functions (i.e.,
linear, superlinear, etc.), what should be the sampling rate so that the overall algorithm is efficient
in the sense that it results in the lowest computational complexity?

• if the optimization method has a sublinear rate of convergence, then there is no sampling rate
that makes the algorithm “efficient”;

• if the optimization algorithm is linearly convergent, then the sampling rate must be geometric
(with restrictions on the constant in the rate) for the algorithm to be “efficient”;

• for superlinearly convergent methods, increasing the sample size at a rate that is slightly faster
than geometric will yield an “efficient” method.
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Design in Practice

• presetting the sampling rate, ie, τ > 1 before running the optimization algorithm, requires
some experimentation. Care must be put in preventing the full sample set from being
employed too soon

• adaptive mechanisms to produce descent directions sufficiently often
• any direction g(wk , ξk) is a descent direction for F at wk if, for some χ ∈ [0, 1), one has

δ(wk , ξk)
def
= ∥g(wk , ξk)−∇F (wk)∥2 ≤ χ ∥g(wk , ξk)∥2

verifying the inequality may be costly because involves the evaluation of ∇F (wk), one can
estimate the left-hand side δ(wk , ξk), and then choose nk so it holds sufficiently often.

• The sample variance obtained by sampling without replacements is bounded above by
χ2 ∥g(wk , ξϵ)∥2

2

• If this condition is not satisfied, then increase the sample size to a size that one might predict
would satisfy such a condition.

• no guarantee that the size nk increases at a geometric rate. Remedy: if the adaptive increasesthe
sampling rate more slowly than a preset geometric sequence, then a growth in the sample size is
imposed.
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Gradient Aggregation

• Rather than compute increasingly more new stochastic gradient information in each iteration,
achieve a lower variance by reusing and/or revising previously computed information

• achieve a linear rate of convergence on strongly convex problems.

• improved rate is achieved primarily by either an increase in computation or an increase in
storage.

• works on finite sums like Rn
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SVRG
Procedure SVRG ; # Methods for Minimizing an Empirical Risk Rn

Choose an initial iterate w1 ∈ Rd , stepsize α > 0 and a positive integer m;
for k = 1, 2, . . . do

Compute the batch gradient ∇Rn(wk);
Initialize w̃1 ← wk ;
for j = 1, . . . ,m do

g̃j ← ∇fij (w̃j)− (∇fij (wk)−∇Rn(wk)) ; # ∇Rn(wk) from batch gradient
w̃j+1 ← w̃j − αg̃j ;

Option (a): Set wk+1 = w̃m+1;
Option (b): Set wk+1 = 1

m

∑m
j=1 w̃j+1;

Option (c): Choose j uniformly from {1, . . . ,m} and set wk+1 = w̃j+1;

• since Eij [∇fij (wk)] = ∇Rn(wk), one can view ∇fij (wk)−∇Rn(wk) as the bias in the gradient
estimate ∇fij (wk).

• sampled gradient ∇fij (w̃j) is corrected based on a perceived bias. Overall, g̃j represents an
unbiased estimator of ∇Rn(w̃j), but with a variance that one can expect to be smaller than as
in simple SG

• Without explicit knowledge of ℓ and c , the length of the inner cycle m and the stepsize α are
typically both chosen by experimentation.
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SAGA
in each iteration, it computes a stochastic vector gk as the average of stochastic gradients
evaluated at previous iterates.

Procedure SAGA ; # Method for Minimizing an Empirical Risk Rn

Choose an initial iterate w1 ∈ Rd and stepsize α > 0;
for i = 1, . . . , n do

Compute ∇fi (w1);
Store ∇fi (w[i ])← ∇fi (w1) ; # w[i ] represents the latest iterate at which ∇fi

for k = 1, 2, . . . do
Choose j uniformly in {1, . . . , n};
Compute ∇fj(wk);
Set gk ← ∇fj(wk)−∇fj(w[j]) +

1
n

∑n
i=1∇fi (w[i ]);

Store ∇fj(w[j])← ∇fj(wk);
Set wk+1 ← wk − αgk ;

As in SVRG, the method employs unbiased gradient estimates, but with variances that are expected
to be less than the stochastic gradients that would be employed in a basic SG routine
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SAGA

• Same per-iteration costs as basic SG

• on strongly convex Rn can achieve a linear rate of convergence but needs knowledge of at least
ℓ.

• More effective initialization instead of evaluating all the gradients {∇fi}ni=1 at the initial point.
For example, one could perform one epoch of simple SG, or one can assimilate iterates
one-by-one and compute gk only using the gradients available up to that point.

• SAGA needs to store n stochastic gradient vectors

• for very large n, gradient aggregation methods are comparable to batch algorithms and
therefore cannot beat SG in this regime
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Iterated Averaging Methods

• for minimizing a continuously differentiable F with unbiased gradient estimates, the idea is to
employ the iteration:

wk+1 ← wk − αg(wk , ξk)

w̃k+1 ←
1

k + 1

k+1∑
j=1

wj

where {w̃k} has no effect on the computation of the SG iterate sequence {wk}

• with stepsizes diminishing at a slow rate of O(1/(ka)) for some a ∈ ( 1
2 , 1) on strongly convex

objectives, yields that E[∥wk − w∗∥22] = O(1/(ka)) while E[∥w̃k − w∗∥22] = O(1/k).

• in certain cases this combination of long steps and averaging yields an optimal constant in
E[∥w̃k − w∗∥22] in the sense that no rescaling of the steps—through multiplication with a
positive definite matrix (second order methods) can improve the asymptotic rate or constant.
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Second Order Methods

• Address the adverse effects of high nonlinearity and ill-conditioning of the objective function
through the use of second-order information.

• improve convergence rates of batch methods or the constants involved in the sublinear
convergence rate of stochastic methods

• First-order methods are not scale invariant. Consider:
F continously differentiable function F : Rd → R

wk+1 ← wk − αk∇F (wk)

linear transformation of the variables {wk} = {Bw̃k}. minw̃ F (Bw̃k)

w̃k+1 ← w̃k − αkB∇F (Bw̃k) =⇒ wk+1 ← wk − αkB
2∇F (wk)

They will perform differently. With α = 1 and B = (∇2F (w1))
−1/2 we get Newton’s method
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• Newton’s method achieves a quadratic rate of convergence if w1 is sufficiently close to a
strong minimizer. On the other hand, stochastic methods like the SG method cannot achieve a
convergence rate that is faster than sublinear, regardless of the choice of B.

• careful use of successive re-scalings based on (approximate) second-order derivatives can be
beneficial between the stochastic and batch regimes.
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Hessian-Free Inexact Newton Methods

• Newton’s method:

wk+1 ← wk + αksk
where sk satisfies ∇2F (wk)sk = −∇F (wk).

• one can solve the linear system inexactly through an iterative approach such as the conjugate
gradient (CG) method.

• By ensuring that the linear solves are accurate enough, such an inexact Newton-CG method
can enjoy a superlinear rate of convergence

• For a smooth objective function F , one can compute ∇2F (w)d at a cost that is a small
multiple of the cost of evaluating ∇F , and without forming the Hessian, which would require
O(d2) storage

• exploit structure of risk measures
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• iterations are more tolerant to noise in the hessian estimate than it is to noise in the gradient
estimate

• employs a smaller, conditionally (given wk) uncorrelated, sample for defining the Hessian than
for the stochastic gradient estimate

• can be combined with a backtracking (Armijo) line search or trust region

• (subsampled) Hessian-vector products can be computed efficiently in ML tasks
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• Stochastic Quasi-Newton Methods:
Like BFGS

• Gauss-Newton Methods
constructs an approximation to the Hessian using only first-order information, and this
approximation is guaranteed to be positive semidefinite, even when the full Hessian itself may
be indefinite.
The price to pay for this convenient representation is that it ignores second-order interactions
between elements of the parameter vector w , which might mean a loss of curvature
information that could be useful for the optimization process.
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Summary

• Ways to cope with the problems in machine learning

• SG might not be the best choice for parallelization

• How about other methods like CMA-ES?
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