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Constrained Optimization

• Minimizing an objective subject to design point restrictions called constraints

• A variety of techniques transform constrained optimization problems into unconstrained
problems

• New optimization problem statement

minimize
x

f (x)

subject to x ∈ X

• The set X ⊂ R is called the feasible set
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Constrained Optimization
Constraints that bound feasible set can change the optimizer

minimize
x

f (x)

subject to x ∈ [a, b]
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Constraint Types

• Generally, constraints are formulated using two types:

1. Equality constraints: h(x) = 0

2. Inequality constraints: g(x) ≤ 0

• Any optimization problem can be written as

minimize
x

f (x)

subject to gi (x) ≤ 0 for all i in {1, . . . ,m}
hj(x) = 0 for all j in {1, . . . , ℓ}

f and the functions h and g are all smooth, real-valued
functions on a subset of Ren

minimize
x

f (x)

subject to g(x) ≤ 0
h(x) = 0
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Transformations to Remove Constraints

• If necessary, some problems can be reformulated to incorporate constraints into the objective
function

• If x is constrained between a and b

x = ta,b(x̂) =
b + a

2
+

b − a

2

(
2x̂

1 + x̂2

)
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Transformations to Remove Constraints

Example

minimize
x

x sin(x)

subject to 2 ≤ x ≤ 6

minimize
x̂

t2,6(x̂) sin(t2,6(x̂))

minimize
x̂

(
4 + 2

(
2x̂

1 + x̂2

))
sin

(
4 + 2

(
2x̂

1 + x̂2

))
6



Transformations to Remove Constraints

Example

minimize
x

f (x)

subject to h(x) = x2
1 + x2

2 + . . .+ x2
n − 1 = 0

• Solve for one of the variables to eliminate constraint:

xn = ±
√

1− x2
1 − x2

2 − . . .− x2
n−1

• Transformed, unconstrained optimization problem:

minimize
x

([
x1, x2, . . . , xn−1,±

√
1− x2

1 − x2
2 − . . .− x2

n−1

])
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Lagrangian Relaxation

• With only equality constraints, critical points (local minima, global minima, or saddle points
optimal) where gradient of f and the gradient of h are aligned

• The method of Lagrangian relaxation is used to optimize a function subject to (equality)
constraints

• Lagrangian multipliers refer to the variables introduced by the method denoted by λ

minimize
x

f (x)

subject to h(x) = 0

1. Form Lagrangian relaxation

L(x , λ) = f (x)− λh(x)

2. Set ∇xL(x , λ) = 0 and ∇λL(x , λ) = 0 to get

∇f (x) = λ∇h(x) h(x) = 0

3. solve for x and λ
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Example

minimize − exp

(
−
(
x1x2 −

3
2

)2

−
(
x2 −

3
2

)2
)

subject to x1 − x2
2 = 0
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Lagrangian Relaxation

Intuitively, the method of Lagrange multipliers finds the point x∗ where the constraint function is
orthogonal to the gradient
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Lagrangian Relaxation with Inequality Constraints

minimize
x

f (x)

subject to g(x) ≤ 0

• If solution lies at the constraint boundary, the constraint is called active, and the Lagrangian
condition holds for a non-negative constant µ:

∇f (x) + µ∇g(x) = 0

• If the solution lies within the boundary, the constraint is called inactive, and the optimal
solution simply lies where

∇f (x) = 0

that is, the Lagrangian condition holds with µ = 0

11



Lagrangian Relaxation with Inequality Constraints

minimize
x

f (x)

subject to g(x) ≤ 0

• We create the Lagrangian relaxation such that it
goes to ∞ outside the feasibility set (g(x) ̸≤ 0)):

L∞(x) = f (x) +∞(g(x) > 0)

impractical: discontinuous and nondifferentiable.
• Instead, for µ > 0:

L(x , µ ≥ 0) = f (x) + µg(x)

L∞(x) = maximize
µ≥0

L(x , µ)

for x infeasible, L∞(x) =∞; for x feasible, L∞(x) = f (x)

• The new optimization problem becomes

minimize
x

maximize
µ≥0

L(x , µ)

This is called the primal problem
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Necessary Conditions – KKT Conditions

minimize
x

f (x)

subject to g(x) ≤ 0
h(x) = 0

Any critical point x∗ must satisfy the Karush-Kuhn-Tucker
conditions

1. primal feasibility: g(x∗) ≤ 0 and h(x∗) = 0

2. dual feasibility: penaliztion is towards feasibility µ ≥ 0

3. complementary slackness: either µi or gi (x∗) is zero.

µigi (x∗) = 0, for i = 1, . . . ,m.

4. stationarity: objective function tanget to each active
constraint

∇f (x∗) +
∑
i

µi∇gi (x∗) +
∑
j

λj∇hj(x∗) = 0
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Necessary Conditions – KKT Conditions

Particular cases

• f concave, g convex: then KKT are also sufficient

• Patological cases

In vector form:
∇f (x∗) + µ · ∇g(x∗) + λ · ∇h(x∗) = 0
µ · g(x∗) = 0
g(x∗) ≤ 0, h(x∗) = 0
µ ≥ 0
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Duality

• Generalized Lagrangian Relaxation:

L(x ,µ,λ) = f (x) +
∑
i

µigi (x) +
∑
j

λjhj(x)

• the primal form is

minimize
x

maximize
µ≥0,λ

L(x ,µ.λ)

• Reversing the order of operations leads to the dual form

maximize
µ≥0,λ

minimize
x

L(x ,µ,λ)

• In some cases, the dual problem is easier to solve computationally than the original problem.
In other cases, the dual can be used to obtain easily a lower bound on the optimal value of the
objective for the primal problem. The dual has also been used to design algorithms for solving
the primal problem.
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Duality

Theorem (Max-min inequality)
For any function f : Z ×W → R ,

sup
z∈Z

inf
w∈W

f (z ,w) ≤ inf
w∈W

sup
z∈Z

f (z ,w) .

Proof: see wikipedia
• When f , W , and Z are convex the inequality becomes equality and we have a strong max–min

property (or a saddle-point property).
• For us:

maximize
µ≥0,λ

minimize
x

L(x ,µ,λ) ≤ minimize
x

maximize
µ≥0,λ

L(x ,µ.λ)

• Therefore, the solution to the dual problem d∗ is a lower bound to the primal solution p∗

• The inner part of the dual problem can be used to define the dual function or dual objective

D(µ ≥ 0,λ) = minimize
x

L(x ,µ,λ)

16



Duality

• The dual function is concave. Gradient ascent on a concave function always converges to the
global maximum.

• Dual Problem: maxD(λ) subject to λ ≥ 0

• Optimizing the dual problem is easy whenever minimizing the Lagrangian with respect to x is
easy.

• For any µ ≥ 0 and any λ, we have

D(µ ≥ 0,λ) ≤ p∗

• The difference between dual and primal solutions d∗ and p∗ is called the duality gap

• Showing zero-duality gap is a “certificate” of optimality
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Penalty methods

• Penalty methods are a way of reformulating a constrained optimization problem as an
unconstrained problem by penalizing the objective function value when constraints are violated

Example

minimize
x

f (x)

subject to g(x) ≤ 0
h(x) = 0

min
x

f (x) + ρ · pcount(x)

s.t. pcount(x) =
∑
i

(gi (x) > 0) +
∑
j

(hj(x) ̸= 0)
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Penalty Methods

Procedure penalty_method;
Input: f , p, x , kmax ; ρ = 1, γ = 2
Output: x solution
for k in 1, ..., kmax do

x ← minimizex{f (x) + ρ · p(x)};
ρ← ρ · γ;
if p(x) = 0 then

return x ;

return x ;

19



Penalty methods

• Count penalty:

pcount(x) =
∑
i

(gi (x) > 0) +
∑
j

(hj(x) ̸= 0)

• Quadratic penalty:

pquadratic(x) =
∑
i

max(gi (x), 0)2 +
∑
j

hj(x)2

• Mixed Penalty:

pmixed(x) = ρ1pcount(x) + ρ2pquadratic(x)

20



Augmented Lagrange Method

• Adaptation of penalty method for equality constraints

pLagrangian(x)
def
=

1
2
ρ
∑
i

(hi (x))2 −
∑
i

λihi (x)

Procedure augmented_lagrange_method;
Input: f , h, x , kmax ; ρ = 1, γ = 2)
λ← 0;
for k in 1, . . . , kmax do

p ←
(
x 7→ ρ/2 ·

∑
i (hi (x)

2)− λ · h(x)
)
;

x ← minimizex{f (x) + p(x)};
λ← λ− ρ · h(x);
ρ← ρ · γ;

return x ;

• λ converges towards the Lagrangian multiplier
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Interior Point Methods

• Also called barrier methods, interior point methods ensure that each step is feasible

• This allows premature termination to return a nearly optimal, feasible point

• Barrier functions are implemented similar to penalties but must meet the following conditions:

1. Continuous
2. Non-negative
3. Approach infinity as x approaches boundary
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Interior Point Methods

• Inverse Barrier:

pbarrier (x) = −
∑
i

1
gi (x)

• Log Barrier:

pbarrier (x) = −
∑
i

{
log(−gi (x)) if gi (x) ≥ −1
0 otherwise

New optimization problem:

minimize
x

f (x) +
1
ρ
pbarrier (x)
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Interior Point Methods
Procedure interior_point_method;
Input: f , p, x ; ρ = 1, γ = 2, ϵ = 0.001
∆←∞;
while ∆ > ϵ do

x ′ ← minimizex{f (x) + p(x)/ρ};
∆← ∥x ′ − x∥;
x ← x ′;
ρ← ρ · γ;

return x ;

• Line searches f (x + αd ) are constrained to the interval α = [0, αu], where αu is the step to
the nearest boundary.
In practice, αu is chosen such that x + αd is just inside the boundary to avoid the boundary
singularity.

• Needs an initial feasible solutions. Typically, found by solving:

minimize
x

pquadratic(x)
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Summary

• Constraints are requirements on the design points that a solution must satisfy

• Some constraints can be transformed or substituted into the problem to result in an
unconstrained optimization problem

• Analytical methods using Lagrange multipliers yield the generalized Lagrangian and the
necessary conditions for optimality under constraints

• A constrained optimization problem has a dual problem formulation that is easier to solve and
whose solution is a lower bound of the solution to the original problem

• Penalty methods penalize infeasible solutions and often provide gradient information to the
optimizer to guide infeasible points toward feasibility

• Interior point methods maintain feasibility but use barrier functions to avoid leaving the
feasible set
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