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Problem Formulation

• If an optimization problem has a linear objective and constraints, it is called a
linear programming problem (linear program, LP)

• The general form of a linear program is:

minimize
x

cTx

subject to Ax ≤ b
Dx ≥ e
Fx = g

x , c ∈ Rn,

A ∈ Rm×n,b ∈ Rm

D ∈ Rp×n, e ∈ Rp

F ∈ Rq×n, g ∈ Rq
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Numerical Example

minimize
x1,x2,x3

2x1 − 3x2 + 7x3

subject to 2x1 + 3x2 − 8x3 ≤ 5
4x1 + x2 + 3x3 ≤ 9
x1 − 5x2 − 3x3 ≥ −4
x1 + x2 + 2x3 = 1
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Modelling in Linear Programming

Example
Given a set of items I , each item with a price pi and a value vi , i in I , select the subset of items
that maximizes the total value collected subject to a total expense that does not exceed a given
budget B.

max
∑
i∈I

pixi

s.t.
∑
i∈I

vixi ≤ B

xi ∈ {0, 1}, for all i in I
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Modelling in Linear Programming

Many problems can be converted into linear programs that have the same solution.

Example

minimize L1 = ∥Ax − b∥1

min 1T s
s.t. Ax − b ≤ s

− (Ax − b) ≤ s

Example

minimize L∞ = ∥Ax − b∥∞

min t

s.t. Ax − b ≤ t1
− (Ax − b) ≤ t1
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Problem Formulation

Every general form linear program can be rewritten more compactly in standard form

minimize
x

cTx

subject to Ax ≤ b
x ≥ 0

x , c ∈ Rn,

A ∈ Rm×n,b ∈ Rm
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Example

minimize 5x1 + 4x2

s.t. 2x1 + 3x2 ≤ 5
4x1 + x2 ≤ 11
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Problem Formulation

• Each inequality constraint defines a planar boundary of the feasible set called a half-space

• The set of inequality constraints define the intersection of multiple half-spaces forming a
convex set

• Convexity of the feasible set, along with convexity of the objective function, implies that if we
find a local feasible minimum, it is also a global feasible minimum.

minimize
x

cTx

subject to Ax ≤ b
x ≥ 0
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Half-Spaces and Supporting Hyperplanes
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Problem Formulation

• How many solutions are there?
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Problem Formulation

Linear programs are often solved in equality form

minimize
x

cTx

subject to Ax = b
x ≥ 0

x , c ∈ R2n+m,

A ∈ Rm×2n+m,

b ∈ Rm
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Simplex Algorithm

• Guaranteed to solve any feasible and bounded linear program

• Works on the equality form

• Assumes that rows of A are linearly independent and m ≤ n′ (n′ ≤ 2n +m)

• The feasible set of a linear program forms a polytope (polyhedra bounded by faces of n − 1
dimension)

• The simplex algorithm moves between vertices of the polytope until it finds an optimal vertex

• Points on faces not perpendicular to c can be improved by sliding along the face in the
direction of the projection of −c onto the face.
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Fundamental Theorem of LP

Theorem (Fundamental Theorem of Linear Programming)
Given:

min{cTx | x ∈ P} where P = {x ∈ Rn | Ax ≤ b}

If P is a bounded polyhedron and not empty and x∗ is an optimal solution to the problem, then:

• x∗ is an extreme point (vertex) of P, or

• x∗ lies on a face F ⊂ P of optimal solution

Proof:

• assume x∗ not a vertex of P then ∃ a ball around it still in P. Show that a point in the ball
has better cost

• if x∗ is not a vertex then it is a convex combination of vertices. Show that all points are also
optimal.
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Simplex Algorithm

• Every vertex for a linear program in equality form can be uniquely defined by n −m
components of x that equal zero.

• choosing m design variables and setting the remaining variables to zero effectively removes
n −m columns of A, yielding an m ×m constraint matrix

• the m selected columns of the matrix A are called basis and denoted by B: xi ≥ 0 for i ∈ B

• the n −m columns not in B are called not in basis and are denoted by V : xi = 0 for i ∈ V .

Ax = ABxB = b =⇒ xB = A−1
B b
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Simplex Algorithm

• every vertex has an associated partition (B,V ),

• not every partition corresponds to a vertex.
AB might be not invertible or the point xB might not be ≥ 0.

• identifying partitions that correspond to vertices corresponds to solving an LP problem as well!

Two phases of the algorithm

1. Initialization Phase: finding a feasible starting vertex

2. Optimization Phase: finding the optimal vertex
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Simplex Algorithm: FONCs

Lagrangian function:

L(x ,µ,λ) = cTx − µTx − λT (Ax − b)

Conditions for Optimality for linear programs: KKT are also sufficient:

• feasibility: Ax = b, x ≥ 0

• dual feasibility: µ ≥ 0

• complementary slackness: µ · x = 0

• stationarity: ATλ+ µ = c
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ATλ+ µ = c =⇒

{
AT
Bλ+ µB = cB

AT
Vλ+ µV = cV

• We can choose µB = 0 to satisfy complementry slackness (because xB ≥ 0)

µV = cV −
(
A−1
B AV

)T
cB

• Knowing µV allows us to assess the optimality of the vertices. If µB contains negative
components, then dual feasibility is not satisfied and the vertex is sub-optimal.

• maintain a partition (B,V ), which corresponds to a vertex of the feasible set polytope.

• The partition can be updated by swapping indices between B and V . Such a swap equates to
moving from one vertex along an edge of the feasible set polytope to another vertex.
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Simplex Algorithm: Optimization Phase
Pivoting

• q ∈ V to enter in B

Ax ′ = ABx ′
B + A{q}x

′
q = ABxB = Ax = b

• p ∈ B to leave B becomes zero during the transition.

x ′
B = xB − A−1

B A{q}x
′
q =⇒ (x ′

B)p = 0 = (xB)p −
(
A−1
B A{q}

)
p
x ′q

• leaving index is obtained using the minimum ratio test: compute x ′q for each potential
leaving index p and select the leaving index p that yields the smallest x ′q.

• Choosing an entering index q decreases the objective function value by

cTx ′ = cT
B x ′

B + cqx
′
q = cTx + µqx ′

q

• The objective function decreases only if µq is negative.
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Simplex Algorithm: Optimization Phase

• In order to progress toward optimality, we must choose an index q in V such that µq is
negative. If all components of µV are non-negative, we have found a global optimum.

• Since there can be multiple negative entries in µV , Several possible heuristics to search for
optimal vertex (choose next q)

• Dantzig’s rule: choose most negative entry in µ; easy to calculate
• Greedy heuristic (largest decrease): maximally reduces objective at each step
• Bland’s rule: chooses first vertex found with negative µ; useful for preventing or breaking out of

cycles
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Simplex Algorithm: Initialization Phase

• The starting vertex of the optimization phase is found by solving an additional auxiliary linear
program that has a known feasible starting vertex

minimize
x,z

[
0T 1T

]x

z


[
A Z

]x

z

 = b

x

z

 ≥ 0

• The solution is a feasible vertex in the original linear program
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Dual Certificates

• Verification that the solution returned by the algorithm is actually the correct solution

• Recall that the solution to the dual problem, d∗ provides a lower bound to the solution of the
primal problem, p∗

• If d∗ = p∗ then p∗ is guaranteed to be the unique optimal value because the duality gap is zero

• What happens if one of the two is unbounded or infeasible?
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Dual Certificates

Linear programs have a simple dual form:
Primal form (equality)

minimize
x

cTx

subject to Ax = b
x ≥ 0

Dual form

maximize
λ

bTλ

subject to ATλ ≤ c
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Strong Duality Theorem
Due to Von Neumann and Dantzig 1947 and Gale, Kuhn and Tucker 1951.

Theorem (Strong Duality Theorem)
Given:

(P) min{cTx | Ax = b, x ≥ 0}

(D) max{bTλ | ATλ ≥ c}

exactly one of the following occurs:
1. (P) and (D) are both infeasible
2. (P) is unbounded and (D) is infeasible
3. (P) is infeasible and (D) is unbounded
4. (P) has feasible solution, then let an optimal be: x∗ = [x∗1 , . . . , x

∗
n ]

(D) has feasible solution, then let an optimal be: λ∗ = [λ∗
1, . . . , λ

∗
m], then:

p∗ = cTx∗ = bTλ∗ = d∗
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Summary

• Linear programs are problems consisting of a linear objective function and linear constraints

• The simplex algorithm can optimize linear programs globally in an efficient manner

• Dual certificates allow us to verify that a candidate primal-dual solution pair is optimal
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