
AI505

Optimization

Discrete Optimization

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Integer Linear Programming
Dynamic ProgrammingOutline

1. Integer Linear Programming

2. Dynamic Programming

0.2

Integer Linear Programming
Dynamic ProgrammingDiscrete Optimization

• Discrete optimization is a branch of optimization that deals with problems where the solution
space is discrete, meaning that the variables can only take on specific, distinct values.

• This is in contrast to continuous optimization, where the variables can take on any value
within a given range.

• Discrete optimization problems are often NP-hard, meaning that they are computationally
challenging to solve.

• Discrete optimization is widely used in various fields, including operations research, computer
science, engineering, and economics.

• It is important to develop efficient algorithms and heuristics to solve these problems, as they
often arise in real-world applications.

0.3

Integer Linear Programming
Dynamic ProgrammingDiscrete Optimization

• What is discrete optimization?
• Problem formulation for linear programs
• Approximate solution techniques
• Exact solution techniques
• Dynamic programming

0.4

Integer Linear Programming
Dynamic ProgrammingDiscrete vs Combinatorial Optimization

In Combinatorial Optimization, variables have some combinatorial structure, ie, sets, permuations,
paths, etc.

Definition (Combinatorial Optimization Problem (COP))
Input: Given a finite set N = {1, . . . , n} of objects,

weights cj for all j ∈ N,
a collection of feasible subsets of N, F

Task: Find a minimum weight feasible subset, ie,

minimize
S⊆N

∑
j∈S

cj | S ∈ F

COP can also be modelled as discrete optimization problems.

Typically: incidence vector of S , xS ∈ Bn: xSj =

{
1 if j ∈ S

0 otherwise

0.5

Integer Linear Programming
Dynamic ProgrammingDiscrete (or Combinatorial) Optimization

Solving problems with variables that are discrete instead of continuous

Example

• Set covering and set partitioning
• Knapsack problem
• Traveling salesman problem
• Vehicle routing problem
• Job scheduling problem
• Facility location problem

• Bin packing problem
• Graph coloring problem
• Maximum flow problem
• Minimum spanning tree problem
• Shortest path problem
• Steiner tree problem
• Hamiltonian path problem

The set of possible discrete values can be finite or infinite

0.6

Integer Linear Programming
Dynamic ProgrammingSolution Methods

Exact Methods:

• Integer programming
• Combinatorial optimization algorithms
• Graph theory algorithms
• Scheduling algorithms
• SAT
• Dedicated Branch and bound
• Dynamic programming
• Constraint programming
• Integer linear programming
• Mixed-integer programming
• Network flow algorithms

Heuristic Methods:

• Approximation algorithms
• Greedy algorithms
• Metaheuristics

• Local Search algorithms
• Genetic algorithms
• Simulated annealing
• Ant colony optimization
• Tabu search

0.7

Integer Linear Programming
Dynamic ProgrammingOutline

1. Integer Linear Programming

2. Dynamic Programming

0.9

Integer Linear Programming
Dynamic ProgrammingNotation: Set of Integer Numbers

• Z set of integer numbers {...,−3,−2,−1, 0, 1, 2, 3, ...}

• Z+ set of positive integers

• Z+
0 set of nonnegative integers ({0} ∪ Z+)

• N0 set of natural numbers, ie, nonnegative integers {0, 1, 2, 3, 4, ...}

• B set of binary numbers

0.10

Integer Linear Programming
Dynamic ProgrammingMixed Integer Linear Programming (ILP)

Linear Objective • Linear Constraints • but! integer variables

max cTx

Ax ≤ b

x ≥ 0

max cTx

Ax ≤ b

x ≥ 0

x integer

max cTx

Ax ≤ b

x ∈ {0, 1}n

max cTx + hTy

Ax + Gy ≤ b

x ≥ 0

y ≥ 0

y integer

Linear Programming
(LP)

Integer Linear Programming
(ILP)

Binary Integer Program
(BIP)
0/1 Integer Programming

Mixed Integer Linear
Programming (MILP)

max f (x)

g(x) ≤ b

x integer

Integer Non-linear
Programming (INLP)

0.11

Integer Linear Programming
Dynamic ProgrammingMathematical Programming: Modeling

• Find out exactly what the decision maker needs to know:

• which investment?
• which product mix?
• which job j should a person i do?

• Define Decision Variables of suitable type (continuous, integer valued, binary) corresponding
to the needs and Known Parameters corresponding to given data.

• Formulate Objective Function computing the benefit/cost

• Formulate mathematical Constraints indicating the interplay between the different variables.

0.12

Integer Linear Programming
Dynamic ProgrammingRounding

max 100x1 + 64x2

50x1 + 31x2 ≤ 250

3x1 − 2x2 ≥ −4

x1, x2 ∈ Z+
0

LP optimum (376/193, 950/193)
IP optimum (5, 0) x1 + 0.64x2 − 4

3x1 − 2x2 + 4

50x1 + 31x2 − 250

x1

x2

Note: rounding
does not help in the
example above!

⇝ feasible region convex but not continuous: Now the optimum can be on the border (vertices)
but also internal.

Possible way: solve the relaxed problem.
• If solution is integer, done.
• If solution is rational (never irrational) try rounding to the nearest integers (but may exit

feasibility region)
if in R2 then 22 possible roundings (up or down)
if in Rn then 2n possible roundings (up or down)

0.13

Integer Linear Programming
Dynamic ProgrammingRounding

Rounding to infeasible point Rounding to suboptmal point

If A is integral, the error of a rounded solution can be bounded
0.14

Integer Linear Programming
Dynamic ProgrammingCutting Planes

max x1 + 4x2

x1 + 6x2 ≤ 18

x1 ≤ 3

x1, x2 ≥ 0

x1, x2 integers

x1 + 6x2 = 18

x1 + 4x2 = 2

x1 = 3

x1 + x2 = 5

x1

x2

Cuts: Useful valid inequalities: they are satisfied by all integer solutions but not by all relaxed
solutions

0.15

Integer Linear Programming
Dynamic ProgrammingCutting Plane Method

• The cutting plane method solves the relaxed LP, adds linear constraints, then repeats until the
solution is exact

• Solves mixed integer programs exactly

• The linear constraints are chosen such that all discrete points are still feasible, but the relaxed
solution is not

0.16

Integer Linear Programming
Dynamic ProgrammingChvatal-Gomory’s Cutting Plane Algorithm

• Recall that we can partition a vertex (and also an optimal one x∗) as

ABx∗
B + ANx∗

N = b

• Using the method of Gomory’s cut, we can add an additional inequality constraint for each
nonintegral dimension

x∗b − ⌊x∗b ⌋ −
∑
j∈N

(
Ābj − ⌊Ābj⌋

)
xj ≤ 0 Ā = A−1

B AN

• This “cuts out” the relaxed solution x∗

x∗b − ⌊x∗b ⌋︸ ︷︷ ︸
>0

−
∑
j∈N

(
Ābj − ⌊Ābj⌋

)
x∗j︸ ︷︷ ︸

=0

> 0

0.17

Integer Linear Programming
Dynamic ProgrammingBranch and Bound

• Algorithm for efficiently searching the very large set of solution possibilities
(first proposed by Ailsa Land and Alison Doig, “An automatic method of solving discrete
programming problems”, 1960)

• Branching is dividing the domain into sections

• Bounding is keeping track of the best solution so far and rejecting regions that cannot
improve upon it

• In the worst case, the algorithm has to search all possibilities but in practice it works very well.
Combined with cutting planes, this approach forms the basis of many commercial MIP solvers.

0.18

Integer Linear Programming
Dynamic ProgrammingBranch and Bound

Example

max x1 + 2x2

x1 + 4x2 ≤ 8

4x1 + x2 ≤ 8

x1, x2 ≥ 0, integer
x1 + 4x2 = 8

4x1 + x2 = 8

x1 + 2x2 = 1

x1

x2

0.19

Integer Linear Programming
Dynamic Programming

4.8
x1 ≤ 1 x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8

x1 + 2x2 = 1

x1 = 1
x2

x1

x1 + 4x2 = 8

4x1 + x2 = 8

x1 + 2x2 = 1

x2

x1

0.20

Integer Linear Programming
Dynamic Programming

4.8
−∞

4.5
−∞

3
3

x1=1
x2=1

x2 ≤ 1

4
4

x1=0
x2=2

x2 ≥ 2

x1 ≤ 1

2
2

x1=2
x2=0

x1 ≥ 2

x1 + 4x2 = 8

4x1 + x2 = 8

x1 + 2x2 = 1

x2

x1

x1 + 4x2 = 8

4x1 + x2 = 8

x1 + 2x2 = 1

x2

x1

0.21

Integer Linear Programming
Dynamic ProgrammingBranch and Bound: Pruning

Pruning by: integrality, bounding, infeasibiliy.

minimize
x,y

− 1.3x − y

1.8x + y ≤ 7.4
y ≤ 5
x , y ∈ Z

0.22

Integer Linear Programming
Dynamic ProgrammingOutline

1. Integer Linear Programming

2. Dynamic Programming

0.23

Integer Linear Programming
Dynamic ProgrammingDynamic Programming

• Applied to problems with optimal substructure and overlapping subproblems

• Optimal substructure means an optimal solution can be constructed from optimal solutions to
its subproblems

• Overlapping subproblems means solving each subproblem separately requires repeating certain
operations

• Dynamic programming begins with desired problem and recurses down to smaller and
smaller subproblems, retrieving the value of previously solved problems as necessary

• Principle of Optimality (known as Bellman Optimality Conditions): Suppose that the solution
of a problem is the result of a sequence of n decisions D1,D2, ...,Dn; if a given sequence is
optimal, then the first k decisions must be optimal, but also the last n − k decisions must be
optimal

• DP breaks down the problem into stages, at which decisions take place, and find a recurrence
relation that relates each stage with the previous one

0.24

Integer Linear Programming
Dynamic ProgrammingExample 1: Knapsack Problem

• Trying to pack some number of
items into a backpack

• Limited space in the backpack
• Each item has a specified

value and size
• What is the best subset of items

to include?

0.25

Integer Linear Programming
Dynamic ProgrammingA MILP Formulation

minimize
x

−
n∑

i=1

vixi

subject to
n∑

i=1

wixi ≤ W

xi ∈ {0, 1}for i = 1, 2, . . . , n

0.26

Integer Linear Programming
Dynamic ProgrammingDynamic Programming

• Let knapsack(i ,w) be the maximum value achievable using the first i items and a knapsack
capacity w .

• Consider the ith item. You can either use it or not.

• If you don’t use it, then the value of your knapsack will be

knapsack(i − 1,w)

• If you use it, then the value of your knapsack will be

knapsack(i − 1,w − wi) + vi

0.27

Integer Linear Programming
Dynamic ProgrammingThe Recursion

• For each item i and weight w :

knapsack(i ,w) =

0 if i = 0

max

{
knapsack(i − 1,w) (discard new item)
knapsack(i − 1,w − wi) + vi (include new item)

if wi ≤ w

knapsack(i − 1,w) if wi > w

• Optimal solution:

z∗ = knapsack(n,W)

and trace back to find the items collected.

0.28

Example

Capacity = 5 kg
Item Weight Value
1 1 kg $1
2 3 kg $4
3 4 kg $5

Step 1: Initialize
Create a table with (number of
items + 1) rows and (capacity
+ 1) columns, filled with zeros.

w = 0 1 2 3 4 5
i=0 | 0 0 0 0 0 0
i=1 | 0
i=2 | 0
i=3 | 0

Step 2: Fill it step by step

Item 1 (w_1=1, v_1=1):
w = 0 1 2 3 4 5

i=0 | 0 0 0 0 0 0
i=1 | 0 1 1 1 1 1
i=2 | 0
i=3 | 0

Item 2 (w_2=3, v_2=4):
w = 0 1 2 3 4 5

i=0 | 0 0 0 0 0 0
i=1 | 0 1 1 1 1 1
i=2 | 0 1 1 4 5 5
i=3 | 0

Item 3 (w_3=4, v_3=5):
w = 0 1 2 3 4 5

i=0 | 0 0 0 0 0 0
i=1 | 0 1 1 1 1 1
i=2 | 0 1 1 4 5 5
i=3 | 0 1 1 4 5 6

Integer Linear Programming
Dynamic ProgrammingExample 2: Padovan Sequence

Pn = Pn−2 + Pn−3 P0 = P1 = P2 = 1

def padovan_naive(n, P=None):
if n < 3:

return 1
else:

return padovan_naive(n - 2, P)↪→
↪→ + padovan_naive(n - 3, ↪→
↪→P)

0.30

Integer Linear Programming
Dynamic Programming

0.31

Integer Linear Programming
Dynamic Programming

def padovan_topdown(n, P=None):
if P is None:

P = {}
if n not in P:

if n < 3:
P[n] = 1

else:
P[n] = padovan_topdown(n - 2, P) + ↪→

↪→padovan_topdown(n - 3, P)
return P[n]

def padovan_bottomup(n):
P = {0: 1, 1: 1, 2: 1}
for i in range(3, n + 1):

P[i] = P[i - 2] + P[i - 3]
return P[n]

0.32

Integer Linear Programming
Dynamic Programming

from functools import lru_cache

@lru_cache(maxsize=None)
def padovan_topdown(n):

if n < 3:
return 1

return padovan_topdown(n - 2) + ↪→
↪→padovan_topdown(n - 3)

def padovan_bottomup_const(n):
if n < 3:

return 1
p0, p1, p2 = 1, 1, 1 # Corresponds to P[0],↪→

↪→ P[1], P[2]
for _ in range(3, n + 1):

p_next = p0 + p1
p0, p1, p2 = p1, p2, p_next

return p2

0.33

Integer Linear Programming
Dynamic Programming

0.34

Integer Linear Programming
Dynamic ProgrammingExample 3: Traveling Salesman Problem

https://www.math.uwaterloo.ca/tsp/

0.35

https://www.math.uwaterloo.ca/tsp/

Integer Linear Programming
Dynamic ProgrammingPrinciple of Optimality

The TSP asks for the shortest tour that starts from 0, visits all cities of the set C = {1, 2, ..., n}
exactly once, and returns to 0, where the cost to travel from i to j is cij (with (i , j) ∈ A)
If the optimal solution of a TSP with six cities is (0, 1, 3, 2, 4, 6, 5, 0), then...

• the optimal solution to visit {1, 2, 3, 4, 5, 6} starting from 0 and ending at 5 is (0, 1, 3, 2, 4, 6, 5)
• the optimal solution to visit {1, 2, 3, 4, 6} starting from 0 and ending at 6 is (0, 1, 3, 2, 4, 6)
• the optimal solution to visit {1, 2, 3, 4} starting from 0 and ending at 4 is (0, 1, 3, 2, 4)
• the optimal solution to visit {1, 2, 3} starting from 0 and ending at 2 is (0, 1, 3, 2)
• the optimal solution to visit {1, 3} starting from 0 and ending at 3 is (0, 1, 3)
• the optimal solution to visit 1 starting from 0 is (0, 1)

⇝ The optimal solution is made up of a number of optimal solutions of smaller subproblems

0.36

Integer Linear Programming
Dynamic ProgrammingEnumerate All Solutions of the TSP

• A solution of a TSP with n cities derives from a sequence of n decisions, where the kth
decision consists of choosing the kth city to visit in the tour

• The number of nodes (or states) grows exponentially with n
• At stage k , the number of states is

(
n
k

)
k!

• With n = 6, at stage k = 6, 720 states are necessary
⇝ DP finds the optimal solution by implicitly enumerating all states but actually generating only
some of them

0.37

Integer Linear Programming
Dynamic ProgrammingAre All States Necessary?

If path (0, 1, 2, 3) costs less than (0, 2, 1, 3), the optimal solution cannot be found in the blue part
of the tree

0.38

Integer Linear Programming
Dynamic ProgrammingAre All States Necessary?

If path (0, 1, 2, 3, 4, 5) costs less than (0, 1, 2, 4, 3, 5), the optimal solution cannot be found in the
blue part of the tree

0.39

Integer Linear Programming
Dynamic ProgrammingAre All States Necessary?

• At stage k (1 ≤ k ≤ n), for each subset of cities S ⊆ C of cardinality k , it is necessary to have
only k states (one for each of the cities of the set S)

• At state k = 3, given the subset of cities S = {1, 2, 3}, three states are needed:
• the shortest-path to visit S by starting from 0 and ending at 1
• the shortest-path to visit S by starting from 0 and ending at 2
• the shortest-path to visit S by starting from 0 and ending at 3

• At stage k ,
(
n
k

)
k states are required to compute the optimal solution (not

(
n
k

)
k!)

#States n = 6
Stage

(
n
k

)
k!

(
n
k

)
k

1 6 6
2 30 30
3 120 60
4 360 60
5 720 30
6 720 6

0.40

Integer Linear Programming
Dynamic ProgrammingComplete Trees with n=4

0.41

Integer Linear Programming
Dynamic ProgrammingDynamic Programming Recursion for the TSP I

• Given a subset S ⊆ C of cities and k ∈ S , let f (S , k) be the optimal cost of starting from 0,
visiting all cities in S , and ending at k

• Begin by finding f (S , k) for |S | = 1, which is f ({k}, k) = c0k ,∀k ∈ C

• To compute f (S , k) for |S | > 1, the best way to visit all cities of S by starting from 0 and
ending at k is to consider all j ∈ S \ {k} immediately before k , and look up f (S \ {k}, j),
namely

f (S , k) = min
j∈S\{k}

{f (S \ {k}, j) + cjk}

• The optimal solution cost z∗ of the TSP is z∗ = mink∈C{f (C , k) + ck0}
0.42

Integer Linear Programming
Dynamic ProgrammingDynamic Programming Recursion for the TSP II

DP Recursion from [Held and Karp (1962)]

1. Initialization. Set f ({k}, k) = c0k for each k ∈ C

2. RecursiveStep. For each stage r = 2, 3, ..., n, compute

f (S , k) = min
j∈S\{k}

{f (S \ {k}, j) + cjk}∀S ⊆ C : |S | = r and ∀k ∈ S

3. Optimal Solution. Find the optimal solution cost z∗ as

z∗ = min
k∈C

{f (C , k) + ck0}

• With the DP recursion, TSP instances with up to 25 - 30 customers can be solved to
optimality; other solution techniques (i.e., branch-and-cut) are able to solve TSP instances
with up to... 85900 customers

• Nonetheless, DP recursions represents the state-of-the-art solution techniques to solve a wide
variety of PDPs

0.43

Integer Linear Programming
Dynamic ProgrammingTSP

0.44

Integer Linear Programming
Dynamic ProgrammingSummary

• Discrete optimization problems require that the design variables be chosen from discrete sets.

• Relaxation, in which the continuous version of the discrete problem is solved, is by itself an
unreliable technique for finding an optimal discrete solution but is central to more
sophisticated algorithms.

• Many combinatorial optimization problems can be framed as an integer program, which is a
linear program with integer constraints.

• Both the cutting plane and branch and bound methods can be used to solve integer programs
efficiently and exactly. The branch and bound method is quite general and can be applied to a
wide variety of discrete optimization problems.

• Dynamic programming is a powerful technique that exploits optimal overlapping substructure
in some problems.

0.45

	Integer Linear Programming
	Dynamic Programming

