
AI505

Optimization

Discrete Optimization
Constraint Programming & Randomized Optimization Heuristics

Marco Chiarandini

Department of Mathematics & Computer Science
University of Southern Denmark

Constraint Programming
Randomized Optimization HeuristicsOutline

1. Constraint Programming

2. Randomized Optimization Heuristics

0.2

Constraint Programming
Randomized Optimization HeuristicsOutline

1. Constraint Programming

2. Randomized Optimization Heuristics

0.3

Constraint Programming
Randomized Optimization HeuristicsNumber Circle Puzzle

Put a different number (1 to 8) in each circle
such that adjacent circles do not have consecu-
tive numbers.

You have 8 minutes

Example by Patrick Prosser with the help of Toby Walsh, Chris Beck, Barbara Smith, Peter van Beek,
Edward Tsang, ... 0.4

Heuristic Search
Which nodes are hardest to number?

?

?

?

?

?

?

? ?

Heuristic Search

?

?

?

?

?

?

? ?

Heuristic Search

?

?

?

?

?

?

? ?

Which are the least constraining values to use?

Heuristic Search

?

1

?

?

8

?

? ?

Values 1 and 8

Heuristic Search

?

1

?

?

8

?

? ?

Values 1 and 8

Symmetry means we don’t need to consider: 8 1

Inference/propagation

?

1

?

?

8

?

? ?

We can now eliminate many values for other nodes

Inference/propagation

?

1

?

?

8

?

? ?

{1,2,3,4,5,6,7,8}

Inference/propagation

?

1

?

?

8

?

? ?

{2,3,4,5,6,7}

Inference/propagation

?

1

?

?

8

?

? ?

{3,4,5,6}

Inference/propagation

?

1

?

?

8

?

? ?

{3,4,5,6}

By symmetry

{3,4,5,6}

Inference/propagation

?

1

?

?

8

?

? ?

{3,4,5,6}

{3,4,5,6}

{1,2,3,4,5,6,7,8}

Inference/propagation

?

1

?

?

8

?

? ?

{3,4,5,6}

{3,4,5,6}

{2,3,4,5,6,7}

Inference/propagation

?

1

?

?

8

?

? ?

{3,4,5,6}

{3,4,5,6}

{3,4,5,6}

Inference/propagation

?

1

?

?

8

?

? ?

{3,4,5,6}

By symmetry

{3,4,5,6}

{3,4,5,6}

{3,4,5,6}

Inference/propagation

?

1

?

?

8

?

? ?

{3,4,5,6}

{3,4,5,6,7}

{3,4,5,6}

{3,4,5,6}

{3,4,5,6}

{2,3,4,5,6}

Inference/propagation

?

1

?

?

8

?

? ?

{3,4,5,6}

{3,4,5,6,7}

{3,4,5,6}

{3,4,5,6}

{3,4,5,6}

{2,3,4,5,6}

Value 2 and 7 are left in just one variable domain each

Inference/propagation

?

1

?

?

8

?

2 7

{3,4,5,6}

{3,4,5,6,7}

{3,4,5,6}

{3,4,5,6}

{3,4,5,6}

{2,3,4,5,6}

And propagate …

Inference/propagation

?

1

?

?

8

?

2 7

{3,4,5}

{3,4,5,6,7}

{3,4,5}

{3,4,5,6}

{3,4,5,6}

{2,3,4,5,6}

And propagate …

Inference/propagation

?

1

?

?

8

?

2 7

{3,4,5}

{3,4,5,6,7}

{3,4,5}

{4,5,6}

{4,5,6}

{2,3,4,5,6}

And propagate …

Inference/propagation

?

1

?

?

8

?

2 7

{3,4,5}

{3,4,5}

{4,5,6}

{4,5,6}

Guess a value, but be prepared to backtrack …

Inference/propagation

3

1

?

?

8

?

2 7

{3,4,5}

{3,4,5}

{4,5,6}

{4,5,6}

Guess a value, but be prepared to backtrack …

Inference/propagation

3

1

?

?

8

?

2 7

{3,4,5}

{3,4,5}

{4,5,6}

{4,5,6}

And propagate …

Inference/propagation

3

1

?

?

8

?

2 7

{4,5}

{5,6}

{4,5,6}

And propagate …

Inference/propagation

3

1

?

?

8

?

2 7

{4,5}

{5,6}

{4,5,6}

Guess another value …

Inference/propagation

3

1

?

5

8

?

2 7

{4,5} {4,5,6}

Guess another value …

Inference/propagation

3

1

?

5

8

?

2 7

{4,5} {4,5,6}

And propagate …

Inference/propagation

3

1

?

5

8

?

2 7

{4} {4,6}

And propagate …

Inference/propagation

3

1

4

5

8

?

2 7

{4} {4,6}

One node has only a single value left …

Inference/propagation

3

1

4

5

8

6

2 7

{6}

Solution

3

1

4

5

8

6

2 7

The Core of Constraint
Computation

•  Modelling
– Deciding on variables/domains/constraints

•  Heuristic Search
•  Inference/Propagation
•  Symmetry
•  Backtracking

Hardness

•  The puzzle is actually a hard problem
– NP-complete

Constraint Programming
Randomized Optimization HeuristicsConstraint programming

• Model problem by specifying constraints on acceptable solutions:
• define variables and domains
• post constraints on these variables

• Solve model
• choose algorithm

- incremental assignment / backtracking search
- complete assignments / stochastic search

• design heuristics

0.5

Constraint Programming
Randomized Optimization HeuristicsConstraint Satisfaction Problem

• Variable xi for each node i = 1, . . . , 8

• Domain {1, . . . , 8} for each variable xi

• Constraints:

allDifferent([x1, x2, x3, x4, x5, x6, x7, x8])
|x1 − x2| > 1
|x2 − x3| > 1
|x3 − x4| > 1
...
|x7 − x8| > 1

0.6

Constraint Programming
Randomized Optimization HeuristicsModeling in Constraint Programming

The domain of a variable x , denoted D(x), is a finite set of elements that can be assigned to x .

A constraint C on X is a subset of the Cartesian product of the domains of the variables in X ,
i.e., C ⊆ D(x1)× · · · × D(xk). A tuple (d1, . . . , dk) ∈ C is called a solution to C .

Equivalently, we say that a solution (d1, ..., dk) ∈ C is an assignment of the value di to the variable
xi for all 1 ≤ i ≤ k , and that this assignment satisfies C .

If C = ∅, we say that it is inconsistent.

0.7

Constraint Programming
Randomized Optimization HeuristicsModeling in Constraint Programming

Constraint Satisfaction Problem (CSP)
A CSP is a finite set of variables X with domain extension D = D(x1)× · · · × D(xn), together
with a finite set of constraints C, each on a subset of X . A solution to a CSP is an assignment of a
value d ∈ D(x) to each x ∈ X , such that all constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)
A COP is a CSP P defined on the variables x1, . . . , xn, together with an objective function
f : D(x1)× · · · ×D(xn) → Q that assigns a value to each assignment of values to the variables. An
optimal solution to a minimization (maximization) COP is a solution d to P that minimizes
(maximizes) the value of f (d).

0.8

Constraint Programming
Randomized Optimization HeuristicsAnother Example: Social Golfers

Example (Social Golfer Problem (Combinatorial Design))

• 9 golfers: 1, 2, 3, 4, 5, 6, 7, 8, 9
• wish to play in groups of 3 players in 4 days
• such that no golfer plays in the same group

with any other golfer more than just once.
Is it possible?

This is an instance of a constrained satisfaction problem. Adding an optimizing criterion we get
a constrained optimization problem.

0.9

Constraint Programming
Randomized Optimization HeuristicsSolution Paradigms

1. Dedicated algorithms
(eg.: enumeration, branch and bound, dynamic programming)

2. Constraint Programming

3. Integer Linear Programming

4. Other modeling (SAT, SMT, etc.)

5. Randomized Search/Optimization Heuristics

Common to 2-5: Representation (modeling) + reasoning (search + inference)

0.10

Constraint Programming
Randomized Optimization HeuristicsConstraint Programming: Representation

Golfers

Integer variables:
assign[i,j] variables whose value is from domain {1, 2, 3}

Constraints:

C1: each group has exactly groupSize players

C2: each pair of players only meets once
0.11

Constraint Programming
Randomized Optimization HeuristicsConstraint Programming: Representation

� �
int: golfers = 9;
int: groupSize = 3;
int: days = 4;
int: groups = golfers/groupSize;
set of int: Golfer = 1..golfers;
set of int: Day = 1..days;
set of int: Group = 1..groups;

array[Golfer, Day] of var Group: assign; % Variables

constraint
% C1: Each group has exactly groupSize players
forall (gr in Group, d in Day)(% c1
sum (g in Golfer) (bool2int(assign[g,d] = gr)) = groupSize
) /\
% C2: Each pair of players only meets at most once
forall (g1, g2 in Golfer, d1, d2 in Day where g1 != g2 /\ d1 != d2) (
(bool2int(assign[g1,d1] = assign[g2,d1]) + bool2int(assign[g1,d2] = assign[g2,d2])) <=1);

solve :: int_search([assign[i,j] | i in Golfer, j in Day],
first_fail, indomain_min, complete) satisfy;� �

0.12

Constraint Programming
Randomized Optimization HeuristicsConstraint Programming: Reasoning

The solution process proceeds by propagating the constraints on the domanins of the variables (ie,
removing values) and tentatively assigning variables until only feasible values are left or
backtracking.

0.15

Constraint Programming
Randomized Optimization HeuristicsOutline

1. Constraint Programming

2. Randomized Optimization Heuristics

0.20

Constraint Programming
Randomized Optimization HeuristicsYet Another Example: TSP

Example (Traveling Salesman Problem)

Can you find a better solution?

0.21

Constraint Programming
Randomized Optimization HeuristicsHeuristics

• Get inspired by approach to problem solving in human mind
[A. Newell and H.A. Simon. “Computer science as empirical inquiry: symbols and search.”
Communications of the ACM, ACM, 1976, 19(3)]

• effective rules without theoretical support
• trial and error

• Applications:
• Optimization
• But also in Psychology, Economics, Management [Tversky, A.; Kahneman, D. (1974).

"Judgment under uncertainty: Heuristics and biases". Science 185]

• Basis on empirical evidence rather than mathematical logic. Getting things done in the given
time.

0.22

Constraint Programming
Randomized Optimization HeuristicsRandomized Optimization Heuristics (ROHs)

Two main search paradigms:

• Constructive search

• Local search

plus high level guiding heuristics (ie, metaheuristics), eg, evolutionary algorithms.

0.23

Constraint Programming
Randomized Optimization HeuristicsROHs: Representation

• Variables = solution representation, tentative solution

• Constraints: relaxed = soft

• Evaluation function to guide the search

0.24

Constraint Programming
Randomized Optimization HeuristicsROHs: Reasoning, Local Search

Solution: Trial and Error

Heuristic algorithms: compute, efficiently, good solutions to a problem (without caring for
theoretical guarantees on running time and approximation quality).

0.25

Constraint Programming
Randomized Optimization HeuristicsROHs: Reasoning, Local Search

Example on Traveling Salesman Problem:

0.28

Constraint Programming
Randomized Optimization HeuristicsROHs: Reasoning, Metaheuristics

Accepting worsening changes

Trying different changes

0.29

Constraint Programming
Randomized Optimization HeuristicsROHs: Reasoning, Metaheuristics

• Stochastic Local Ssearch
• Simulated Annealing
• Iterated Local Search
• Tabu Search
• Variable Neighborhood Search
• Adaptive Large Neighborhood Search
• Evolutionary Algorithms
• Ant Colony Optimization
• Estimation-of-Distribution Algorithms
• Artificial Immune Systems
• ...
• Evolutionary Computation Bestiary http://fcampelo.github.io/EC-Bestiary/
• Supernatural inspired [Maturana, Fouhey, 2013]

0.30

http://fcampelo.github.io/EC-Bestiary/

Constraint Programming
Randomized Optimization HeuristicsA Classification

• White box optimization:
models can be expressed mathematically

• Grey box optimization:
internal information about objective function computation is often available
models that have a mathematical expression but may need data to determine them (eg, neural
networks)

• Black box optimization:
no mathematical expression is available

0.33

Constraint Programming
Randomized Optimization HeuristicsApproaches to ROHs

• White/Grey box: representation (modelling) + reasoning (search)
constraint based local search, comet, local solver (Hexaly)

• Black Box: a different approach, framework separating problem from solvers and defining the
interface specification
EasyLocal, ...,

=⇒ Cost Action: ROAR-NET

https://github.com/roar-net/roar-net-api-spec

0.34

https://github.com/roar-net/roar-net-api-spec

Constraint Programming
Randomized Optimization HeuristicsA Search Problem

Definition (Problem statement)
Assume we want to solve a constrained optimization problem: min f (x) | x ∈ F where is a set of
feasible solutions and f an objective function. All parameters of the problem are known and
deterministic.

Definition (Search or Optimization Algorithm)
Goal formulation: we want to find the minimum with respect to some criteria from a set of
candidate elements.

Problem formulation: Given a description of the states, an initial state and actions necessary to
reach the goal, find a sequence of actions to reach the goal.

Search: the algorithm simulates sequences of actions in the model of the goal, searching until it
finds a sequence of actions that reaches the goal. The algorithm might have to simulate multiple
tentative answers that do not meet the goal, but eventually it reach a solution, or it will find that
no solution is possible.

0.35

Constraint Programming
Randomized Optimization HeuristicsSearch Algorithms

Components of a Search Algorithm (1):

• State or Search Space A set of possible states that the search can be in.

• State or (Candidate) solution: a definition of the states of the search,

• Initial State that the search starts in. For example: an empty set of actions or a complete set
of actions.

• Goal A set of one or more goal states. Sometimes there is one goal state sometimes there is a
small set of alternative goal states

• Evaluation function f (s) assess the distance from a potential goal. It can also include relaxed
constraints.

0.36

Constraint Programming
Randomized Optimization HeuristicsSearch Algorithms

Components of a Search Algorithm (2):

• Action Type t available to the algorithm. Neighborhood Structure

• For a given Action Type t and a State/Solution s, Actions(t, s) returns a finite set of actions
of type t that can be executed in s. We say that each of these actions is applicable in s. A
transition model, which describes what each action does. Neighborhood

• Result(s, a) returns the state that results from doing action a in state s. Apply Move

• Action-Cost(s, a, s ′) or c(s, a, s ′) action cost function gives the numeric cost of applying
action a in state s to reach state s ′. It reflects the evaluation of the state. Increment

0.37

Constraint Programming
Randomized Optimization HeuristicsConstraint Handling

In the Constraint Based Local Search community, constraints in heuristic methods are handled:

• implicitly in the definition of the search space and of the actions

• as one way constraints

• as soft constraints
ie, relaxed in the evaluation function as objectives with large weights or as lexicographically
more important objectives

0.38

Constraint Programming
Randomized Optimization HeuristicsApplication Programming Interface (API)

(Here: not meant as Web API, network-based API, or REST API.)
The ROAR-NET API Specification is the definition of an interface or protocol between
optimization problems seen as black box and their solvers in order to facilitate understanding,
reusing and scaling of solution approaches.

We look for a model which
• ... allows one to use off the shelf components to solve it.

• ... assumes a separation between problem specifics and solver.

• .. is designed as a software interface offering a service to other pieces of software and is
implemented by the user.

• ... promotes reusability of software components and minimizes the user’s effort to deploy a
solution for the specific optimization problem at hand.

• ... aims at maximizing code extensability, reusability, and simplicity.

0.39

Constraint Programming
Randomized Optimization HeuristicsTypes

• Problem the problem instance
• Solution implements the representation of a tentative solution
• Value represents points in objective space
• Neighborhood a function that given a solution, gives another solution neighbor : S → S ,

based on a neighborhood, compute a Move
• Move applied to a solution to get the novel solution
• Increment represents points in objective space

Simplification in single objective cases: Value and Increment are Reals (ie, Double or
Integer)

0.40

Constraint Programming
Randomized Optimization HeuristicsOperations: Problem Representation

... on Problem (P):
• empty_solution(P): Solution
• random_solution(P): Solution
• heuristic_solution(P): Solution[0..1]

... on Solution S:
• copy_solution(S): Solution
• lower_bound(S): Value[0..1]
• evaluation_value(): Value[0..1]

0.41

Constraint Programming
Randomized Optimization HeuristicsOperations: Search

... on Neighborhood (N):
• construction_neighbourhood(Problem): Neighbourhood
• destruction_neighbourhood(Problem): Neighbourhood
• local_neighbourhood(Problem): Neighbourhood
• moves(N, Solution): Move[0..*]
• random_move(N, Solution): Move[0..1]
• random_move_without_replacement(N, Solution): Move[0..*]

0.42

Constraint Programming
Randomized Optimization HeuristicsOperations: Search

... on Move:
• lower_bound_increment(Move, Solution): double[0..1]
• objective_value_increment(Move, Solution): double[0..1]

apply_move(M, Solution): Solution applies the move to a solution, to get a novel solution
• invert_move(M): Move computes the inverse of a move to revert it

0.43

Constraint Programming
Randomized Optimization HeuristicsThe Full API

Types
Problem
Solution
Value
Neighborhood
Move

Operations on Problem
empty_solution
random_solution
heuristic_solution

Operations on Solution
objective_value
lower_bound
copy_solution

Operations on Neighborhood
local_neighbourhood
construction_neighbourhood
destruction_neighbourhood

Operations on Move
moves
random_move
random_moves_without_replacement

lower_bound_increment
objective_value_increment

apply_move
invert_move

0.44

	Constraint Programming
	Randomized Optimization Heuristics

