AI505 Optimization

Discrete Optimization Constraint Programming & Randomized Optimization Heuristics

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline

Single Machine Total Weighted Tardiness

Given: a set of *n* jobs $\{J_1, \ldots, J_n\}$ to be processed on a single machine and for each job J_i a processing time p_i , a weight w_i and a due date d_i .

Task: Find a schedule that minimizes the total weighted tardiness $\sum_{i=1}^{n} w_i \cdot T_i$ where $T_i = \max\{C_i - d_i, 0\}$ (C_i completion time of job J_i)

Example:

Job		J_1	J_2	J_3	J_4	J_5	J_6
Processing Tir	ne	3	2	2	3	4	3
Due date		6	13	4	9	7	17
Weight		2	3	1	5	1	2
Sequence $\phi = J_3, J_1, J_5, J_4, J_1, J_6$							
Job	J_3	J_1	J_5	J_4	J_2	J_6	-
C_i	2	5	9	12	14	17	-
				-		-	
T_i	0	0	2	3	1	0	

Single Machine Total Weighted Tardiness Problem

- Interchange: size $\binom{n}{2}$ and O(|i-j|) evaluation each
 - first-improvement: π_j, π_k

 $p_{\pi_j} \leq p_{\pi_k}$ for improvements, $w_j T_j + w_k T_k$ must decrease because jobs in π_j, \ldots, π_k can only increase their tardiness.

 $p_{\pi_j} \ge p_{\pi_k}$ possible use of auxiliary data structure to speed up the computation

- best-improvement: π_j, π_k
 - $p_{\pi_j} \leq p_{\pi_k}$ for improvements, $w_j T_j + w_k T_k$ must decrease at least as the best interchange found so far because jobs in π_j, \ldots, π_k can only increase their tardiness.

 $p_{\pi_i} \geq p_{\pi_k}$ possible use of auxiliary data structure to speed up the computation

- Swap: size n-1 and O(1) evaluation each
- Insert: size $(n-1)^2$ and O(|i-j|) evaluation each But possible to speed up with systematic examination by means of swaps: an interchange is equivalent to |i-j| swaps hence overall examination takes $O(n^2)$