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Remarks

See solutions to Sheet 11 on SMTWTP

• Logging

• Testing

• Multiple neighborhoods

• Metaheuristics
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Escaping Local Optima

Possibilities:

• Restart: re-initialize search whenever a local optimum
is encountered.
(Often rather ineffective due to cost of initialization.)

• Non-improving steps: in local optima, allow selection of
candidate solutions with equal or worse evaluation function value, e.g., using minimally
worsening steps.
(Can lead to long walks in plateaus, i.e., regions of
search positions with identical evaluation function.)

• Diversify the neighborhood

Note: None of these mechanisms is guaranteed to always
escape effectively from local optima.
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Diversification vs Intensification

• Goal-directed and randomized components of LS strategy need to be balanced carefully.

• Intensification: aims at greedily increasing solution quality, e.g., by exploiting the evaluation
function.

• Diversification: aims at preventing search stagnation, that is, the search process getting
trapped in confined regions.

Examples:

• Iterative Improvement (II, First improvement or Best improvement): intensification strategy.
• Uninformed Random Walk/Picking (URW/P): diversification strategy.

Balanced combination of intensification and diversification mechanisms forms the basis for
advanced LS methods.
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Greedy Local Search

Key idea: Best improvement (Hill Climber or Steepest Descent) + Sideways Moves + seldom
worsening moves
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• GSAT begins with a rapid greedy descent towards a better truth assignment

• then long sequences of sideways moves take place. Sideways moves are moves that do not
increase or decrease the total number of unsatisfied clauses. They navigate through plateaux,
which is SAT are many and large

• GSAT [Selman et al. 1992] at its times was able to beat complete search algorithms (they
were not using CDC)
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Randomized Iterative Improvement
aka, Stochastic Hill Climbing

Key idea: Allow worsening moves: In each search step, with a fixed probability
perform an uninformed random walk step instead of an iterative improvement step.
greedy + uniform random walk

Randomized Iterative Improvement (RII):
determine initial candidate solution s
while termination condition is not satisfied do

With probability wp:
choose a neighbor s ′ of s uniformly at random

Otherwise:
choose a neighbor s ′ of s such that f (s ′) < f (s) or,

if no such s ′ exists, choose s ′ such that f (s ′) is minimal
s := s ′

With infite time it reaches optimum with p > 0 [Hoos and Tsang].
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Example: Randomized Iterative Improvement for SAT
procedure RIISAT(F ,wp,maxSteps)

input: a formula F , probability wp, integer maxSteps
output: a model φ for F or ∅
choose assignment φ for F uniformly at random;
steps := 0;
while not(φ is not proper) and (steps < maxSteps) do

with probability wp do
select x in X uniformly at random and flip;

otherwise
select x in X c uniformly at random from those that

maximally decrease number of clauses violated;
change φ;
steps := steps+1;

end
if φ is a model for F then return φ
else return ∅
end

end RIISAT

X c set of variables in violated clauses
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Note:

• No need to terminate search when local minimum is encountered

Instead: Impose limit on number of search steps or CPU time,
from beginning of search or after last improvement.

• Probabilistic mechanism permits arbitrary long sequences
of random walk steps

Therefore: When run sufficiently long, RII is guaranteed
to find (optimal) solution to any problem instance with
arbitrarily high probability.

• GWSAT [Selman et al., 1994],
was at some point state-of-the-art for SAT.
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Focused Local Search: WalkSAT

Example of slc heuristic: with prob. wp select a random move, with prob. 1− wp select the best
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Extension to CSP. Recall the Definitions

Constraint Satisfaction Problem (CSP)
A CSP is a finite set of variables X , together with a finite set of constraints C , each on a subset of
X . A solution to a CSP is an assignment of a value d ∈ D(x) to each x ∈ X , such that all
constraints are satisfied simultaneously.

Constraint Optimization Problem (COP)
A COP is a CSP P defined on the variables x1, . . . , xn, together with an objective function
f : D(x1)× · · · ×D(xn)→ Q that assigns a value to each assignment of values to the variables. An
optimal solution to a minimization (maximization) COP is a solution d to P that minimizes
(maximizes) the value of f (d).
⇝ Constraints in a CSP can be relaxed and their violations determine the objective function.
This is the most common approach in LS
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Min-Conflict Heuristic
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Guided Local Search

• Key Idea: Modify the evaluation function whenever
a local optimum is encountered.

• Associate weights (penalties) with solution components; these determine impact of
components on evaluation function value.

• Perform Iterative Improvement; when in local minimum, increase penalties of some solution
components until improving steps become available.

Guided Local Search (GLS):
determine initial candidate solution s
initialize penalties
while termination criterion is not satisfied do

compute modified evaluation function g ′ from g
based on penalties

perform subsidiary local search on s
using evaluation function g ′

update penalties based on s
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Guided Local Search

• Modified evaluation function:

g ′(s) := f (s) +
∑

i∈SC(s)

penalty(i),

where SC (s) is the set of solution components
used in candidate solution s.

• Penalty initialization: For all i : penalty(i) := 0.

• Penalty update in local minimum s: Typically involves penalty increase of some or all
solution components of s; often also occasional penalty decrease or penalty smoothing.

• Subsidiary local search: Often Iterative Improvement.
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Potential problem:
Solution components required for (optimal) solution may also be present in many local minima.

Possible solutions:
A: Occasional decreases/smoothing of penalties.
B: Only increase penalties of solution components that are

least likely to occur in (optimal) solutions.

Implementation of B: Only increase penalties of solution components i with maximal utility
[Voudouris and Tsang, 1995]:

util(s, i) :=
fi (s)

1 + penalty(i)

where fi (s) is the solution quality contribution of i in s.
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Example: Guided Local Search (GLS) for the TSP
[Voudouris and Tsang 1995; 1999]
• Given: TSP instance π

• Search space: Hamiltonian cycles in π with n vertices;
• Neighborhood: 2-edge-exchange;

• Solution components edges of π;
fe(G , p) := w(e);

• Penalty initialization: Set all edge penalties to zero.

• Subsidiary local search: Iterative First Improvement.

• Penalty update: Increment penalties of all edges with maximal utility by

λ := 0.3 · w(s2-opt)

n

where s2-opt = 2-optimal tour.

0.26



Guided Local Search for SAT

• Assign a positive weight to each clause

• attempt to minimize the sum of the weights of the unsatisfied clauses.

• The clause weights are dynamically modified (additively or multiplicatively) as the search
progresses, increasing the weight of the clauses that are currently unsatisfied.

• Depends on:
how often and by how much the weights of unsatisfied clauses are increased, and
how are all weights periodically decreased in order to prevent certain weights from becoming
dis-proportionately high.
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Discrete Lagrangian Method

• Change the objective function bringing constraints gi into it

L(s,λ) = f (s) +
∑
i

λigi (s)

• λi are continous variables called Lagrangian Multipliers

• L(s∗, λ) ≤ L(s∗,λ∗) ≤ L(s,λ∗)

• Alternate optimizations in s and in λ
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Discrete Lagrangian Method for SAT

let Ui (x) be a function that is 0 if Ci is satisfied by a solution x , and 1 otherwise.

minimize N(x) =
m∑
i=1

Ui (x)

s.t.Ui (x) = 0 ∀i ∈ {1, 2, . . . ,m}

Discrete Lagrangian Function:

Ld(x , λ) = N(x) +
m∑
i=1

λiUi (x)

A point (x∗, λ∗) ∈ {0, 1}n ×Rm is called a saddle point of the Lagrange function Ld(x , λ) if it is a
local minimum w.r.t. x∗ and a local maximum w.r.t. λ∗. Formally, (x∗, λ∗) is a saddle point for Ld
if Ld(x∗, λ) ≤ Ld(x

∗, λ∗) ≤ Ld(x , λ
∗)
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Probabilistic Iterative Improv.

Key idea: Accept worsening steps with probability that depends
on respective deterioration in evaluation function value:
bigger deterioration ∼= smaller probability

Realization:
• Function p(f , s): determines probability distribution

over neighbors of s based on their values under
evaluation function f .

• Accept s ′ neighbor of s with probability p(f , s, s ′).

Note:
• Behavior of PII crucially depends on choice of p.
• II and RII are special cases of PII.
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Example: Metropolis PII for the TSP

• Search space S : set of all Hamiltonian cycles in given graph G .
• Solution set: same as S

• Neighborhood relation N (s): 2-edge-exchange
• Initialization: an Hamiltonian cycle uniformly at random.
• Step function: implemented as 2-stage process:

1. select neighbor s ′ ∈ N(s) uniformly at random;
2. accept as new search position with probability:

p(T , s, s ′) :=

{
1 if f (s ′) ≤ f (s)

exp −(f (s′)−f (s))
T

otherwise

(Metropolis condition), where temperature parameter T controls likelihood of accepting
worsening steps.

• Termination: upon exceeding given bound on run-time.
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Inspired by statistical mechanics in matter physics:
• candidate solutions ∼= states of physical system
• evaluation function ∼= thermodynamic energy
• globally optimal solutions ∼= ground states
• parameter T ∼= physical temperature

Note: In physical process (e.g., annealing of metals), perfect ground states are achieved by very
slow lowering of temperature.
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Simulated Annealing

Key idea: Vary temperature parameter, i.e., probability of accepting worsening moves, in
Probabilistic Iterative Improvement according to annealing schedule (aka cooling schedule).

Simulated Annealing (SA):
determine initial candidate solution s
set initial temperature T according to annealing schedule
while termination condition is not satisfied: do

while maintain same temperature T according to annealing schedule do
probabilistically choose a neighbor s ′ of s using proposal mechanism
if s ′ satisfies probabilistic acceptance criterion (depending on T ) then

s := s ′

update T according to annealing schedule
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• 2-stage step function based on
• proposal mechanism (often uniform random choice from N(s))
• acceptance criterion (often Metropolis condition)

• Annealing schedule
(function mapping run-time t onto temperature T (t)):

• initial temperature T0

(may depend on properties of given problem instance)
• temperature update scheme

(e.g., linear cooling: Ti+1 = T0(1 − i/Imax),
geometric cooling: Ti+1 = α · Ti )

• number of search steps to be performed at each temperature
(often multiple of neighborhood size)

• may be static or dynamic
• seek to balance moderate execution time with asymptotic behavior properties

• Termination predicate: often based on acceptance ratio,
i.e., ratio accepted / proposed steps or number of idle iterations
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Example: Simulated Annealing for TSP

Extension of previous PII algorithm for the TSP, with
• proposal mechanism: uniform random choice from

2-exchange neighborhood;
• acceptance criterion: Metropolis condition (always accept improving steps, accept worsening

steps with probability exp [−(f (s ′)− f (s))/T ]);
• annealing schedule: geometric cooling T := 0.95 ·T with n · (n− 1) steps at each temperature

(n = number of vertices in given graph), T0 chosen such that 97% of proposed steps are
accepted;

• termination: when for five successive temperature values no improvement in solution quality
and acceptance ratio < 2%.

Improvements:
• neighborhood pruning (e.g., candidate lists for TSP)
• greedy initialization (e.g., by using NNH for the TSP)
• low temperature starts (to prevent good initial candidate solutions from being too easily

destroyed by worsening steps)
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Profiling
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Iterated Local Search

Key Idea: Use two types of LS steps:
• subsidiary local search steps for reaching

local optima as efficiently as possible (intensification)

• perturbation steps for effectively
escaping from local optima (diversification).

Also: Use acceptance criterion to control diversification vs intensification behavior.
Iterated Local Search (ILS):
determine initial candidate solution s
perform subsidiary local search on s
while termination criterion is not satisfied do

r := s
perform perturbation on s
perform subsidiary local search on s
based on acceptance criterion,

keep s or revert to s := r
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Note:

• Subsidiary local search results in a local minimum.

• ILS trajectories can be seen as walks in the space of
local minima of the given evaluation function.

• Perturbation phase and acceptance criterion may use aspects of search history (i.e.,
limited memory).

• In a high-performance ILS algorithm, subsidiary local search, perturbation mechanism and
acceptance criterion need to complement each other well.
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Components

Subsidiary local search: (1)

• More effective subsidiary local search procedures lead to better ILS performance.
Example: 2-opt vs 3-opt vs LK for TSP.

• Often, subsidiary local search = iterative improvement,
but more sophisticated LS methods can be used.
(e.g., Tabu Search).
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Components

Perturbation mechanism: (1)

• Needs to be chosen such that its effect cannot be easily undone by subsequent local search
phase.
(Often achieved by search steps larger neighborhood.)
Example: local search = 3-opt, perturbation = 4-exchange steps in ILS for TSP.

• A perturbation phase may consist of one or more
perturbation steps.

• Weak perturbation ⇒ short subsequent local search phase;
but: risk of revisiting current local minimum.

• Strong perturbation ⇒ more effective escape from local minima;
but: may have similar drawbacks as random restart.

• Advanced ILS algorithms may change nature and/or strength of perturbation adaptively during
search.
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Components

Acceptance criteria: (1)

• Always accept the best of the two candidate solutions

⇒ ILS performs Iterative Improvement in the space of local optima reached by subsidiary local
search.

• Always accept the most recent of the two candidate solutions

⇒ ILS performs random walk in the space of local optima reached by subsidiary local search.

• Intermediate behavior: select between the two candidate solutions based on the Metropolis
criterion (e.g., used in Large Step Markov Chains [Martin et al., 1991].

• Advanced acceptance criteria take into account search history,
e.g., by occasionally reverting to incumbent solution.
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Examples
Example: Iterated Local Search for the TSP (1)

• Given: TSP instance π.

• Search space: Hamiltonian cycles in π.

• Subsidiary local search: Lin-Kernighan variable depth search algorithm

• Perturbation mechanism:
‘double-bridge move’ = particular 4-exchange step:

A

BC

D

double bridge 

move

A

BC

D

• Acceptance criterion: Always return the best of the two given candidate round trips.
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Tabu Search

Key idea: Avoid repeating history (memory)
How can we remember the history without

• memorizing full solutions (space)

• computing hash functions (time)

⇝ use attributes
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Tabu Search

Key idea: Use aspects of search history (memory) to escape from local minima.

• Associate tabu attributes with candidate solutions or solution components.

• Forbid steps to search positions recently visited by
underlying iterative best improvement procedure based on tabu attributes.

Tabu Search (TS):
determine initial candidate solution s
While termination criterion is not satisfied:
|| determine set N ′ of non-tabu neighbors of s
|| choose a best candidate solution s ′ in N ′

|||| update tabu attributes based on s ′

⌊ s := s ′
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Example: Tabu Search for CSP

• Search space: set of all complete assignments of X .

• Neighborhood structure: one exchange

• Memory: Associate tabu status (Boolean value) with each pair (variable,value) (x , val).

• Initialization: a random assignment

• Search steps:
• pairs (x , v) are tabu if they have been changed in the last tt steps;
• neighboring assignments are admissible if they can be reached by changing a non-tabu pair

or have fewer unsatisfied constraints than the best assignments seen so far (aspiration criterion);
• choose uniformly at random admissible neighbors with minimal number of unsatisfied constraints.

• Termination: upon finding a feasible assignment or
after given bound on number of search steps has been reached or
after a number of idle iterations
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Note:

• Admissible neighbors of s: Non-tabu search positions in N(s)

• Tabu tenure: a fixed number of subsequent search steps
for which the last search position
or the solution components just added/removed from it
are declared tabu

• Aspiration criterion (often used): specifies conditions under which
tabu status may be overridden (e.g., if considered step leads to improvement in incumbent
solution).

• Crucial for efficient implementation:
• efficient best improvement local search
⇝ pruning, delta updates, (auxiliary) data structures

• efficient determination of tabu status:
store for each variable x the number of the search step
when its value was last changed itx ; x is tabu if
it − itx < tt, where it = current search step number.
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Design Choices

Design choices:

• Neighborhood exploration:

• no reduction
• min-conflict heuristic

• Prohibition power for move = <x,new_v,old_v>

• <x,-,->

• <x,-,old_v>

• <x,new_v,old_v>, <x,old_v,new_v>

• Tabu list dynamics:

• Interval: tt ∈ [tb, tb + w ]

• Adaptive: tt = ⌊α · c⌋+ RandU(0, tb)
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Variable Neighborhood Search

Variable Neighborhood Search is a method based on the systematic change of the neighborhood
during the search.

Central observations
• a local minimum w.r.t. one neighborhood function is not necessarily locally minimal w.r.t.

another neighborhood function
• a global optimum is locally optimal w.r.t. all neighborhood functions
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Key principle: change the neighborhood during the search

• Several adaptations of this central principle

• (Basic) Variable Neighborhood Descent (VND)

• Variable Neighborhood Search (VNS)

• Reduced Variable Neighborhood Search (RVNS)

• Variable Neighborhood Decomposition Search (VNDS)

• Skewed Variable Neighborhood Search (SVNS)

• Notation

• Nk , k = 1, 2, . . . , km is a set of neighborhood functions

• Nk(s) is the set of solutions in the k-th neighborhood of s
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How to generate the various neighborhood functions?

• for many problems different neighborhood functions (local searches) exist / are in use
• change parameters of existing local search algorithms
• use k-exchange neighborhoods; these can be naturally extended
• many neighborhood functions are associated with distance measures; in this case increase the

distance

0.66



Basic Variable Neighborhood Descent

Procedure BVND
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax

k ← 1
repeat

s ′ ← FindBestNeighbor(s,Nk)
if f (s ′) < f (s) then

s ← s ′

(k ← 1)
else

k ← k + 1
until k = kmax ;

0.67



Variable Neighborhood Descent

Procedure VND
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax

k ← 1
repeat

s ′ ← IterativeImprovement(s,Nk)
if f (s ′) < f (s) then

s ← s ′

k ← 1
else

k ← k + 1
until k = kmax ;
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• Final solution is locally optimal w.r.t. all neighborhoods

• First improvement may be applied instead of best improvement

• Typically, order neighborhoods from smallest to largest

• If iterative improvement algorithms IIk , k = 1, . . . , kmax

are available as black-box procedures:
• order black-boxes
• apply them in the given order
• possibly iterate starting from the first one
• order chosen by: solution quality and speed
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Basic Variable Neighborhood Search

Procedure BVNS
input : Nk , k = 1, 2, . . . , kmax , and an initial solution s
output: a local optimum s for Nk , k = 1, 2, . . . , kmax

repeat
k ← 1
repeat

s ′ ← RandomPicking(s,Nk)
s ′′ ← IterativeImprovement(s ′,Nk)
if f (s ′′) < f (s) then

s ← s ′′

k ← 1
else

k ← k + 1
until k = kmax ;

until Termination Condition;
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To decide:
• which neighborhoods
• how many
• which order
• which change strategy

• Extended version: parameters kmin and kstep; set k ← kmin and increase by kstep if no better
solution is found (achieves diversification)
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Constructive search

What is a partial solution (as opposed to a complete solution)?

• Solutions as subsets of a larger ground set of solution components

• Partial solutions as a representation of all candidate solutions that contain them

• Not all subsets of components are valid partial solutions

• Construction rule

• Assessment of partial solutions:

• inferred from the sets of solutions that they represent

• Lower bound (minimization) or upper bound (maximization)
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Complete Search Methods

Tree (or graph) search in
Uninformed settings (satisfaction probs)
• Breadth-first search
• Uniform-cost search
• Depth-first search
• Depth-limited search
• Iterative deepening search
• Bidirectional Search

Informed settings (optimization probs)
• best-first search, aka, greedy search
• A∗ search
• Iterative Deepening A∗

• Memory bounded A∗

• Recursive best first

In construction heuristics for this course, we can assume tree search of fixed known depth.
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Complete Tree Search

Uninformed

Search Space
tree with branching factor at the top level nd
at the next level (n − 1)d .
The tree has n! · dn even if only dn possible complete assignments.
Informed
• CSP is commutative in the order of application of any given set of action. (we reach same

partial solution regardless of the order)

• Hence generate successors by considering possible assignments for only a single variable at
each node in the search tree.

• look-ahead, best first, etc.
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Dealing with Constraints

Backtracking search
depth-first search that chooses one variable at a time and backtracks when a variable has no legal
values left to assign.
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Backtrack Search

• No need to copy solutions all the times but rather extensions and undo extensions

• Since CSP is standard then the alg is also standard and can use general purpose algorithms for
initial state, successor function and goal test.

• Backtracking is uninformed and complete. Other search algorithms may use information in
form of heuristics.
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Backtracking
General Concepts

Decisions in general purpose methods:

1) Which variable should we assign next, and in what order should its values be tried?

2) What are the implications of the current variable assignments for the other unassigned
variables?

3) When a path fails – that is, a state is reached in which a variable has no legal values can the
search avoid repeating this failure in subsequent paths?

Search (1) + Inference (2) + Backtracking (3) = Constraint Programming

In the general case, at point 1) we use heuristic rules.

If we do not backtrack (point 3) then we have a construction heuristic.
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1) Which variable should we assign next,
and in what order should its values be tried?

• Select-Initial-Unassigned-Variable

• Select-Unassigned-Variable
• most constrained first = fail-first heuristic

= Minimum remaining values (MRV) heuristic
(tend to reduce the branching factor and to speed up pruning)

• least constrained last

Eg.: max degree, farthest, earliest due date, etc.

• Order-Domain-Values
• greedy
• least constraining value heuristic

(leaves maximum flexibility for subsequent variable assignments)
• maximal regret

implements a kind of look ahead
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2) What are the implications of the current variable assignments for the other
unassigned variables?

Propagating information through constraints:
• Implicit in Select-Unassigned-Variable

• Forward checking (coupled with Minimum Remaining Values)

• Constraint propagation in CSP
• arc consistency: force all (directed) arcs uv to be consistent:

∃ a value in D(v) : ∀ values in D(u), otherwise detects inconsistency

can be applied as preprocessing or as propagation step after each assignment (Maintaining Arc
Consistency)

Applied repeatedly
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3) When a path fails – that is, a state is reached in which a variable has no legal values
can the search avoid repeating this failure in subsequent paths?

Backtracking-Search
• chronological backtracking, the most recent decision point is revisited
• backjumping, backtracks to the most recent variable in the conflict set (set of previously

assigned variables connected to X by constraints).
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Dealing with Objectives

A∗ search
• The priority assigned to a node x is determined by the function

f (x) = g(x) + h(x)

g(x): cost of the path so far
h(x): heuristic estimate of the minimal cost to reach the goal from x .

• It is optimal if h(x) is an
• admissible heuristic: never overestimates the cost to reach the goal
• consistent: h(n) ≤ c(n, a, n′) + h(n′)

(consistent =⇒ admissible, only necessary in graph search)
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A∗ best-first search
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A∗ search

Possible choices for admissible heuristic functions
• optimal solution to an easily solvable relaxed problem
• optimal solution to an easily solvable subproblem
• learning from experience by gathering statistics on state features
• preferred heuristics functions with higher values (provided they do not overestimate)
• if several heuristics available h1, h2, . . . , hm and not clear which is the best then:

h(x) = max{h1(x), . . . , hm(x)}
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A∗ search
Drawbacks
• Time complexity: In the worst case, the number of nodes expanded is exponential,

(but it is polynomial when the heuristic function h meets the following condition:

|h(x)− h∗(x)| ≤ O(log h∗(x))

h∗ is the optimal heuristic, the exact cost of getting from x to the goal.)

• Memory usage: In the worst case, it must remember an exponential number of nodes.
Several variants: including iterative deepening A∗ (IDA∗), memory-bounded A∗ (MA∗) and
simplified memory bounded A∗ (SMA∗) and recursive best-first search (RBFS)
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Incomplete Search

Complete search is often better suited when ...

• proofs of insolubility or optimality are required;
• time constraints are not critical;
• problem-specific knowledge can be exploited.

Incomplete search is the necessary choice when ...

• non linear constraints and non linear objective function;
• reasonably good solutions are required within a short time;
• problem-specific knowledge is rather limited.
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Greedy algorithms

Greedy algorithms

• Strategy: always make the choice that is best at the moment
• They are not generally guaranteed to find globally optimal solutions

(but sometimes they do: Minimum Spanning Tree, Single Source Shortest Path, etc.)

We will see problem sepcific examples
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Best-first search
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Incomplete Search

On backtracking framework
(beyond depth-first search)

• Bounded backtrack
• Credit-based search
• Limited Discrepancy Search
• Barrier Search
• Randomization in Tree Search
• Random Restart

Outside the exact framework
(beyond greedy search)

• Random Restart
• Rollout/Pilot Method
• Beam Search
• Iterated Greedy
• GRASP
• (Adaptive Iterated Construction Search)
• (Multilevel Refinement)
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Bounded backtrack

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm

0.105

http://4c.ucc.ie/~hsimonis/visualization/techniques/partial_search/main.htm


Credit-based search

• Key idea: important decisions are at the top
of the tree

• Credit = backtracking steps
• Credit distribution: one half at the best child

the other divided among the other children.
• When credits run out follow deterministic

best-search
• In addition: allow limited backtracking steps

(eg, 5) at the bottom
• Control parameters: initial credit,

distribution of credit among the children,
amount of local backtracking at bottom.
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Limited Discrepancy Search

Limited Discrepancy Search (LDS)

• Key observation that often the heuristic used
in the search is nearly always correct with
just a few exceptions.

• Explore the tree in increasing number of
discrepancies, modifications from the
heuristic choice.

• Eg: count one discrepancy if second best is
chosen
count two discrepancies either if third best is
chosen or twice the second best is chosen

• Control parameter: the number of
discrepancies
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Randomization in Tree Search

The idea comes from complete search: the important decisions are made up in the search tree
(backdoors - set of variables such that once they are instantiated the remaining problem simplifies
to a tractable form)
⇝ random selections + restart strategy

Random selections
• randomization in variable ordering:

• breaking ties at random
• use heuristic to rank and randomly pick from small factor from the best
• random pick among heuristics
• random pick variable with probability depending on heuristic value

• randomization in value ordering:
• just select random from the domain

Restart strategy in backtracking

• Example: Su = (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 4, 8, 1, . . .)
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Rollout/Pilot Method

Derived from A∗

• Each candidate solution is a collection of m components S = (s1, s2, . . . , sm).

• Master process adds components sequentially to a partial solution Sk = (s1, s2, . . . sk)

• At the k-th iteration the master process evaluates feasible components to add based on an
heuristic look-ahead strategy.

• The evaluation function H(Sk+1) is determined by sub-heuristics that complete the solution
starting from Sk

• Sub-heuristics are combined in H(Sk+1) by
• weighted sum
• minimal value

Note: this evaluation is not a lower bound!
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Speed-ups:
• halt whenever cost of current partial solution exceeds current upper bound
• evaluate only a fraction of possible components
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Beam Search

Based on the tree search framework:

• maintain a set B of bw (beam width) partial candidate solutions

• at each iteration extend each solution from B in fw (filter width) possible ways

• rank each bw × fw candidate solutions and take the best bw partial solutions

• complete candidate solutions obtained by B are maintained in Bf

• Stop when no partial solution in B is to be extended
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Example
Three phases of Beam Search (expansion, simulation, pruning), illustrated with beam width bw = 3
and expansion factor bf = 2.

In the ‘Expansion’ a tree consisting of bw blue trajectories represents a beam extended to depth 2.
Of all its possible child nodes, only bf candidates (colored red) per each leaf node are selected.
Wavy arrows in the ‘Simulation’ figure complete the rollouts, each earning a different reward value.
In the ‘Pruning’ phase, the beam grows by another depth, keeping its width size to bf after pruning
out the candidate nodes with poor performances.

Choo, Jinho et al. 2022

https://paperswithcode.com/paper/simulation-guided-beam-search-for-neural
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GRASP
Greedy Randomized Adaptive Search Procedure

Key Idea: Combine randomized constructive search with subsequent local search.

Motivation:

• Candidate solutions obtained from construction heuristics can often be substantially improved
by local search.

• Local search methods often require substantially fewer steps to reach high-quality solutions
when initialized using greedy constructive search rather than random picking.

• By iterating cycles of constructive + local search, further performance improvements can be
achieved.
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Greedy Randomized “Adaptive” Search Procedure (GRASP):
while termination criterion is not satisfied do

generate candidate solution s using
subsidiary greedy randomized constructive search

perform subsidiary local search on s

• Randomization in constructive search ensures that a large number of good starting points for
subsidiary local search is obtained.

• Constructive search in GRASP is ‘adaptive’ (or dynamic):
Heuristic value of solution component to be added to
a given partial candidate solution may depend on
solution components present in it.

• Variants of GRASP without local search phase
(aka semi-greedy heuristics) typically do not reach
the performance of GRASP with local search.
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Restricted candidate lists (RCLs)

• Each step of constructive search adds a solution component selected uniformly at random
from a restricted candidate list (RCL).

• RCLs are constructed in each step using a heuristic function h.

• RCLs based on cardinality restriction comprises the k best-ranked solution components. (k is a
parameter of the algorithm.)

• RCLs based on value restriction comprise all solution components l for which
h(l) ≤ hmin + α · (hmax − hmin),
where hmin = minimal value of h and hmax = maximal value
of h for any l . (α is a parameter of the algorithm.)

• Possible extension: reactive GRASP (e.g., dynamic adaptation of α
during search)
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Example: Squeaky Wheel

Key idea: solutions can reveal problem structure which maybe worth to exploit.

Use a greedy heuristic repeatedly by prioritizing the elements that create troubles.

Squeaky Wheel
• Constructor: greedy algorithm on a sequence of problem elements.
• Analyzer: assign a penalty to problem elements that contribute to flaws in the current

solution.
• Prioritizer: uses the penalties to modify the previous sequence of problem elements. Elements

with high penalty are moved toward the front.

Possible to include a local search phase between one iteration and the other
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Iterated Greedy

Key idea: use greedy construction
• alternation of construction and deconstruction phases
• an acceptance criterion decides whether the search continues from the new or from the old

solution.

Iterated Greedy (IG):
determine initial candidate solution s
while termination criterion is not satisfied do

r := s
(randomly or heuristically) destruct part of s
greedily reconstruct the missing part of s
based on acceptance criterion,

keep s or revert to s := r
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Adaptive Large Neighborhood Search

https://imada.sdu.dk/u/marco/DM841/slides/dm841-hr-alns.pdf
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Ant Colony Optimization

https://imada.sdu.dk/u/marco/DM841/slides/dm841-hr-aco.pdf
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Evolutionary Algorithms

https://imada.sdu.dk/u/marco/DM841/slides/dm841-hr-evolutionary.pdf
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