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1. Introduction



Who is here?

42 in total registered in ItsLearning

• AI505 (7.5 ECTS)
34 from Bachelor in AI

• AI505 (7.5 ECTS) + IAAI501 (2.5 ECTS)
8 from Master in Mathematics and Economics

Prerequisites
• Calculus
• Linear Algebra
• Programming
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Aims of the course

Learn about optimization:

• continuous multivariate optimization

• discrete optimization

Optimization is an important tool in machine learning, decision making and in analyzing
physical systems.
In mathematical terms, an optimization problem is the problem of finding the best solution from
the set of all feasible solutions.

The first step in the optimization process is constructing an appropriate mathematical
formulation. The second is devising an algorithm for solving the mathematical formulation.
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Contents of the Course (Pensum)

Unit Main topic

1 Introduction, Univariate Problems

2 Multivariate Problems, Gradient-Based Methods

3 Derivative-Free Methods

4 Optimization for Machine Learning

5 Constrained Optimization, Linear Programming

6 Sampling Methods

7 Discrete Optimization and Heuristics
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Practical Information

Teacher: Marco Chiarandini (imada.sdu.dk/u/marco/)

Instructor: Bonnie Liefting (H21)

Schedule, alternative views:

• mitsdu.sdu.dk, SDU Mobile
• Official course description (læserplanen)
• ItsLearning
• https://ai-505.github.io

Schedule (16 weeks):
• Introductory classes: 40 hours (20 classes)
• Training classes: 30 hours (15 classes)
• Scheduled: 16× 4 = 64 hours
• No classes in week 8
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Communication Means

• ItsLearning ⇔ External Web Page
(link https://ai-505.github.io)

• Announcements in ItsLearning

• Write to Marco (marco@imada.sdu.dk) or to instructor

• Collaborate with peers

⇝ It is good to ask questions!!

⇝ Let me know if you think we should do things differently!
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Sources — Reading Material

Main reference:

[KW] Mykel J. Kochenderfer, Tim A. Wheeler. Algorithms for
Optimization 2019. The MIT Press.

Others

[NW] J. Nocedal and S. J. Wright, Numerical Optimization, Second
Edition. Springer Series in Operations Research, 2006
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Course Material

External Web Page is the main reference for list of contents
(ie1, syllabus, pensum).

It will collect:

• slides

• list of topics and references

• exercises

• links

• tutorials for programming tasks

1ie = id est = that is, eg = exempli gratia = for example, wrt = with respect to, et al. = et alii = and others
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Assessment

Portfolio consisting of:
• mandatory assignments in groups of 2:

1. assignment
2. assignment
3. assignment
4. assignment

Time line to be announced.

• oral exam on June 11-13, 2025

The oral examination consists of questions on the basis of the handed in assignments and can be
extended to other parts of the course curriculum.

Final grade: starting from the grade of the assignments overall evaluation can move up or down by
at most two levels.

(language: Danish and/or English)
Introduction 1.9



Exercise Sessions (1/2)

For exercises in general:
• Both theoretical, modeling and programming tasks

• No mandatory hand-ins, voluntary participation, but all lectures and exercises are relevant for
to exam

• Help each other! Teaching others is the best form of learning

• Bonnie will be there to help

• Exercises should help you to learn - don’t hesitate to find a work setting or extend with other
material that works better for you

Exercises are group work
• Exercises best done in pairs of 2-3 people

• Try to gather in different groups every now and then
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Exercise Sessions (1/2)

Notation: +, ∗, ’ ’

• plus exercises are to be done before the class

• starred exercises are done in class

• unmarked exercises are for self study

• starred exercises are examples of assignment questions
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Coding

Set up your local Python programming environment and use the available tutorial to:

• Brush up some knowledge on Python-IDEs and Git

• Grasp some basics on jupyter notebooks

• Recap basics of data processing and visualization

We will span several programming modes, functional, imperative, object oriented, small scripts
large code bases, use pf modules and packages. We will use git.
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Introduction

• Applications of Optimization
• Physics
• Business
• Biology
• Engineering
• Machine Learning
• Logistics and Scheduling

• Objectives to Optimize
• Efficiency
• Safety
• Accuracy

• Constraints
• Cost
• Weight
• Structural Integrity

• Challenges
• High-Dimensional Search Spaces
• Multiple Competing Objectives
• Model Uncertainty
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A Brief History

• Algebra, study of the rules for manipulating mathematical symbols
• Calculus, study of continuous change It stems from the developments of Leibniz (1646–1716)

and Newton (1642–1727). Both differential and integral calculus make use of the notion of
convergence of infinite series to a well-defined limit.

• Computers mid-twentieth and numerical algorithms for optimization
• Linear programming, which is an optimization problem with a linear objective function and

linear constraints. Leonid Kantorovich (1912–1986) presented a formulation for linear
programming and an algorithm to solve it.

• It was applied to optimal resource allocation problems during World War II. George Dantzig
(1914–2005) developed the simplex algorithm, which represented a significant advance in
solving linear

• Richard Bellman (1920–1984) developed the notion of dynamic programming, which is a
commonly used method for optimally solving complex problems by breaking them down into
simpler problems

• Artificial Intelligence (⇐⇒ Optimization)
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Real World vs Model vs Representation vs Implementation

The Real World: That messy thing we are trying to study (with computers).

Model: Mathematical object in some class M.

Representation: An object of an abstract data type R used to store the model.

Implementation: An object of a concrete type used to store the model.

Any object from the real world might have different models.
Any model might have several representations (exact).
And representation might have different implementations (exact).

We will focus on the algorithmic aspects of optimization that arise after the problem has been
properly formulated

Introduction 1.16



Optimization Process

An optimization algorithm is used to incrementally improve the design until it can no longer be
improved or until the budgeted time or cost has been reached.
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Optimization Process

Search the space of possible designs with the aim of finding the best one.

Depending on the application, this search may involve:

• evaluating an analytical expression (white or glass box)
• running physical experiments, such as wind tunnel tests (black box)
• running computer simulations

Modern optimization techniques can be applied to problems with millions of variables and
constraints.
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Basic Optimization Problem

minimize
x

f (x)

subject to x ∈ X

• Design Point
• Design Variables
• Objective Function
• Feasible Set
• Minimizer

Any value of x from among all points in the feasible set X that minimizes the objective function is
called a solution or minimizer. A particular solution is written x∗.

x∗ = argmin f (x) subject to x ∈ X

There is only one minimum but there can be many minimizers

maximize x f (x) subject to x ∈ X ≡ minimize x −f (x) subject to x ∈ X
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Basic Optimization Problem

minimize
x

f (x)

subject to x ∈ X
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Constraints

minimize
x1,x2

f (x1, x2)

subject to x1 ≥ 0
x2 ≥ 0

x1 + x2 ≤ 1
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Constraints

minimize
x

f (x)

subject to x > 1

The problem has no solution.
x = 1 would not be feasible.

x = 1 would be the solutions to

infimum
x

f (x) subject to x > 1

infimum of a subset X of a partially ordered set P is the greatest element in P that is less than or
equal to each element of X , if such an element exists. Aka, greatest lower bound.
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Critical Points
Univariate function
global vs local minimum
Def. A point x∗ is at a local minimum (or is a local minimizer) if there exists a δ > 0 such that
f (x∗) ≤ f (x) for all x with ∥x − x∗∥ < δ.
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Conditions for Local Minima

Univariate objective functions, assuming they are differentiable (Derivatives exist), without
constraints

Local minimum: Necessary condition but not sufficient condition:
1. f ′(x∗) = 0, the first-order necessary condition (FONC)
2. f ′′(x∗) ≥ 0, the second-order necessary condition (SONC)
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Conditions for Local Minima

Multivariate objective functions, assuming they are differentiable (gradients and Hessians exist),
without constraints

Local minimum: Necessary condition but not sufficient condition:
1. ∇f (x∗) = 0, the first-order necessary condition (FONC)
2. ∇2f (x∗) ≥ 0, the second-order necessary condition (SONC)
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Contour Plots

f (x1, x2) = x2
1 − x2

2

can be rendered in a 3D space but convenient to represent it also in 2D showing the lines of
constant output value
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Taylor Expansion
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Taylor Expansion

Introduction 1.29



Taylor Expansion Multidim
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Example: Rosenbrock function

f (x , y) = (a− x)2 + b(y − x2)2

It has a global minimum at (x , y) = (a, a2), where f (x , y) = 0. Usually, these parameters are set
such that a = 1 and b = 100. Only in the trivial case where a = 0 the function is symmetric and
the minimum is at the origin.

Multivariate generalization
sum of N/2 uncoupled 2D Rosenbrock problems, and defined only for even N:

f (x) = f (x1, x2, . . . , xN) =

N/2∑
i=1

[
100(x2

2i−1 − x2i )
2 + (x2i−1 − 1)2

]
.

This variant has predictably simple solutions.
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Example: Rosenbrock function
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Example: Rosenbrock function
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Overview
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Optimization Taxonomy

(NEOS Server, University of Wisconsin)

https://neos-guide.org/guide/types/

Optimization Problem Types

https://neos-guide.org/guide/types/


Problem classification

Different classification parameters:

• Univariate f : R→ R vs Multivariate f : Rn → R

• Real-valued f : Rn → R vs vector functions f : Rn → Rm

• Linear vs Nonlinear

• Nonlinear: Convex vs Nonconvex, unimodal vs multimodal

• Constrained vs unconstrained

• Smooth (differentiable) vs non smooth (non differentiable)

• Deterministic vs Uncertain

• Continuous vs Discrete
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Application Example
In robotics, an autonomous agent (e.g., a drone, robotic arm, or self-driving car) needs to
determine an optimal path from a starting position to a target while satisfying constraints such as
avoiding obstacles, minimizing energy consumption, or optimizing smoothness.
Formulating the Optimization Problem
The goal is to find a smooth trajectory x(t) that minimizes a cost function:

J =

∫ t f

t0

C (x(t),u(t))dt

x(t) is the state (e.g., position, velocity), u(t) is the control input (e.g., force, acceleration),
C (x ,u) is the cost function, which could represent energy usage, time, or distance.
Constraints:

• Dynamic Constraints: Governed by the system’s physics (e.g., Newton’s laws for a robot arm
or quadcopter): x ′ = f (x ,u)

• Obstacle Avoidance: Ensures that the trajectory does not collide with obstacles:
g(x(t)) ≥ 0,∀t

• Boundary Conditions: The system must start and end at given positions with certain velocities.
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Summary

• Optimization is the process of finding the best system design subject to a set of constraints

• Optimization is concerned with finding global minima of a function

• Minima can occur where the gradient is zero, but zero-gradient does not imply optimality
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Definitions

• [a, b] = {x ∈ R | a ≤ x ≤ b} closed interval
(a, b) = {x ∈ R | a < x < b} open interval

• column vectors and matrices
scalar product: yTx =

∑n
i=1 yixi

• Ax column vector combination of the columns of A;
uTA row vector combination of the rows of A
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Definitions

• linear combination

v1, v2 . . . , vk ∈ Rn

λλλ = [λ1, . . . , λk ]
T ∈ Rk

x = λ1v1 + · · ·+ λkvk =
k∑

i=1

λivi

moreover:

λλλ ≥ 0 conic combination

λλλT1 = 1 affine combination

λλλ ≥ 0 and λλλT1 = 1 convex combination

(
k∑

i=1

λi = 1

)
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Definitions
• convex set: if x , y ∈ S and 0 ≤ λ ≤ 1 then λx + (1− λ)y ∈ S

• convex function if its epigraph
{(x , y) ∈ R2 : y ≥ f (x)} is a convex set or if
f : Rn → R and
if ∀x , y ∈ Rn, α ∈ [0, 1] it holds that
f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y)
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Definitions

• For a set of points S ⊆ Rn

lin(S) linear hull (span)
cone(S) conic hull
aff(S) affine hull

conv(S) convex hull

conv(X ) =
{
λ1x1 + λ2x2 + . . .+ λnxn | xi ∈ X , λ1, . . . , λn ≥ 0 and

∑
i λi = 1

}
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Norms

Def. A norm is a function that assigns a length to a vector.

A function f is a norm if:
1. f (x) = 0 if and only if x is the zero vector
2. f (ax) = |a|f (x), such that lengths scale
3. f (x + y) ≤ f (x) + f (y), also known as trinagle inequality

Lp norms are commonly used set of norms paramterized by a scalar p ≥ 1:

∥x∥p = lim
ρ→p

(|x1|ρ + |x2|ρ + . . .+ |xn|ρ)
1
ρ

L∞ is also called the max norm, Chebyshev distance or chessboard distance.
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Derivaties

• Derivatives tell us which direction to search
for a solution

• Slope of Tanget Line

f ′(x) :=
df (x)
dx

(Leibniz notation)
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Derivatives

f (x +∆x) ≈ f (x) + f ′(x)∆x

f ′(x) =
∆x

∆x

Derivatives and Gradients 2.9



Symbolic Differentiation
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Symbolic Differentiation

import sympy as sp

# Define the variable
x = sp.symbols('x')

# Define the function
f = x**2 + x/2 - sp.sin(x)/x

# Compute the derivative
df_dx = sp.diff(f, x)

# Display the result
print("The symbolic derivative of f is:")
print(df_dx)

derivative.py
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Derivatives in Multiple Dimensions

• Gradient Vector

∇f (x) =
[
∂f (x)
∂x1

, ∂f (x)
∂x2

, . . . , ∂f (x)
∂xn

]

• Hessian Matrix

∇2f (x) =



∂2f (x)
∂x1 ∂x1

∂2f (x)
∂x1 ∂x2

. . . ∂2f (x)
∂x1 ∂xn

∂2f (x)
∂x1 ∂x2

∂2f (x)
∂x2 ∂x2

. . . ∂2f (x)
∂x2 ∂xn

...
. . .

...

∂2f (x)
∂x1 ∂xn

∂2f (x)
∂x2 ∂xn

. . . ∂2f (x)
∂xn ∂xn
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Directional derivative

The directional derivative ∇s f (x) of a multivariate function f : Rn → R is the instantaneous rate
of change of f (x) as x = [x1, x2, . . . , xn] is moved with velocity s = [s1, s2, . . . , sn].

To compute ∇s f (x):

• compute ∇s f (x) =
∂f (x)
∂x1

s1 +
∂f (x)
∂x2

s2 + . . .+ ∂f (x)
∂xn

sn = ∇f (x)T s = ∇f (x) · s

• g(α) := f (x + αs) and then compute g ′(0)
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Matrix Calculus
Common gradient:

∇xbTx =?

bTx = [b1x1 + b2x2 + . . .+ bnxn]

∂bTx
∂xi

= bi

∇xbTx = ∇xxTb = b
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Matrix Calculus
Common gradient:

∇xxTAx =?

xTAx =



x1

x2

...

xn



T 

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann





x1

x2

...

xn


=



x1

x2

...

xn



T 

x1a11 + x2a12 + . . .+ xna1n

x1a21 + x2a22 + . . .+ xna2n

...

x1an1 + x2an2 + . . .+ xnann



=

x2
1a11 + x1x2a12 + . . .+ x1xna1n+

x1x2a21 + x2
2a22 + . . .+ x2xna2n+

...

x1xnan1 + x2xnan2 + . . .+ x2
n ann
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∂

∂xi
xTAx =

n∑
j=1

xj (aij + aji )

∇xxTAx =



∑n
j=1 xj (a1j + aj1)∑n
j=1 xj (a2j + aj2)

...∑n
j=1 xj (anj + ajn)


=



a11 + a11 a12 + a21 . . . a1n + an1

a21 + a12 a22 + a22 . . . a2n + an2
...

...
. . .

...

an1 + a1n an2 + a2n . . . ann + ann





x1

x2

...

xn


=
(
A+ AT

)
x
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Smoothness

Def. The smoothness of a function is a property measured by the number of continuous
derivatives (differentiability class) it has over its domain.

A function of class C k is a function of smoothness at least k ; that is, a function of class C k is a
function that has a kth derivative that is continuous in its domain.

The term smooth function refers to a C∞-function. However, it may also mean “sufficiently
differentiable” for the problem under consideration.
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Smoothness

• Let U be an open set on the real line and a function f defined on U with real values. Let k be
a non-negative integer.

• The function f is said to be of differentiability class C k if the derivatives f ′, f ′′, . . . , f (k)

exist and are continuous on U.

• If f is k-differentiable on U, then it is at least in the class C k−1 since f ′, f ′′, . . . , f (k−1) are
continuous on U.

• The function f is said to be infinitely differentiable, smooth, or of class C∞, if it has
derivatives of all orders (continous) on U.

• The function f is said to be of class Cω, or analytic, if f is smooth and its Taylor series
expansion around any point in its domain converges to the function in some neighborhood of
the point.

• There exist functions that are smooth but not analytic; Cω is thus strictly contained in C∞.
Bump functions are examples of functions with this property.

Derivatives and Gradients 2.19



Smoothness



Positive Definteness

Def. A symmetric matrix A is positive definite if xTAx is positive for all points other than the
origin: xTAx > 0 for all x ̸= 0.
Def. A symmetric matrix A is positive semidefinite if xTAx is always non-negative: xTAx ≥ 0 for
all x .

A matrix A is positive definite if and only all its eigenvalues are positive.

If the matrix A is positive definite in the function f (x) = xTAx , then f has a unique global
minimum.

Recall that the second order Taylor approximation of a twice-differentiable function f at x0 is

f (x) ≈ f (x0) +∇f (x0)
T (x − x0) +

1
2
(x − x0)

TH0(x − x0)

where H0 is the Hessian evaluated at x0. If (x − x0)
TH0(x − x0) has a unique global minimum,

then the overall approximation has a unique global minimum.
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Symbolic Derivatives

• Symbolic derivatives can give valuable insight into the structure of the problem domain and, in
some cases, produce analytical solutions of extrema (e.g., solving for d

dx f (x) = 0) that can
eliminate the need for derivative calculation altogether.

• But they do not lend themselves to efficient runtime calculation of derivative values, as they
can get exponentially larger than the expression whose derivative they represent
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Numerical Differentiation

Finite Difference Method

• Neighboring points are used to approximate the derivative

• h too small causes numerical cancellation errors (square root or cube root of the machine
precision for floating point values: sys.float_info.epsilon difference between 1 and closest
representable number)
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Derivation
from Taylor series expansion:

• forward difference has error term O(h), linear error as h approaches zero

• central difference has error term is O(h2)
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import sys
import numpy as np

def diff_forward(f, x: float, h: float=np.sqrt(sys.float_info.epsilon)) -> float:
return (f(x+h) - f(x))/h

def diff_central(f, x: float, h: float=np.cbrt(sys.float_info.epsilon)) -> float:
return (f(x+h/2) - f(x-h/2))/h

def diff_backward(f, x: float, h: float=np.sqrt(sys.float_info.epsilon)) -> float:
return (f(x) - f(x-h))/h

# Example usage
def func(x):

return x**2 + np.sin(x)

x0 = 1.0
print(f"The derivative at x = {x0} is {diff_forward(func, x0)}")

finite_diff.py
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Numerical Differentiation
Complex step method
Uses one single function evaluation after taking a step in the imaginary direction.
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import numpy as np

def diff_complex(f, x: float, h: float=1e-20) -> float:
return np.imag(f(x + h * 1j)) / h

# Example usage
def func(x):

return x**2 + np.sin(x)

x0 = 1.0
print(f"The derivative at x = {x0} is {diff_complex(func, x0)}")

complex_diff.py

Derivatives and Gradients 2.29



Numerical Differentiation Error Comparison

At small h, round off errors
dominate, and at large h, trun-
cation errors dominate.
Note the log transformation.
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Numerical Differentiation in ML

• Approximation errors would be tolerated in a deep learning setting thanks to the
well-documented error resiliency of neural network architectures (Gupta et al., 2015).

• The O(n) complexity of numerical differentiation for a gradient in n dimensions is the main
obstacle to its usefulness in machine learning, where n can be as large as millions or billions in
state-of-the-art deep learning models (Shazeer et al., 2017).
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Automatic Differentiation
Automatic differentiation techniques are founded on the observation that any function is evaluated
by performing a sequence of simple elementary operations involving just one or two arguments at a
time:

• addition
• multiplication
• division
• power operation ab

• trigonometric functions
• exponential functions
• logarithmic
• chain rule:

d
dx

f (g(x)) =
d
dx

f ◦ g(x) = df
dg

dg
dx
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• Forward Accumulation is equivalent to expanding a function using the chain rule and
computing the derivatives inside-out

• Requires n-passes to compute n-dimensional gradient
• Example:

f (a, b) = ln(ab +max(a, 2))
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Automatic Differentiation

Computational graph: nodes are are operations and the edges are input-output relations. leaf
nodes of a computational graph are input variables or constants, and terminal nodes are values
output by the function
Forward accumulation for f (a, b) = ln(ab +max(a, 2))

∂b
∂a = ḃ Newton notation

dual numbers
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Automatic Differentiation
Computational graph: nodes are are operations and the edges are input-output relations. leaf
nodes of a computational graph are input variables or constants, and terminal nodes are values
output by the function
Forward accumulation for f (a, b) = ln(ab +max(a, 2))

∂b
∂a = ḃ Newton notation

dual numbers

for ∂f
∂b set ȧ = 0, ḃ = 1
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Dual numbers

• Dual numbers can be expressed mathematically by including the abstract quantity ϵ, where ϵ2

is defined to be 0.

• Like a complex number, a dual number is written a+ bϵ where a and b are both real values.

• (a+ bϵ) + (c + dϵ) = (a+ c) + (b + d)ϵ
(a+ bϵ)× (c + dϵ) = (ac) + (ad + bc)ϵ

• by passing a dual number into any smooth function f , we get the evaluation and its derivative.
We can show this using the Taylor series:
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Note that

satisfies the rules of differentiation

Setting:

The chain rule follows:
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Automatic Differentiation

• Reverse accumulation is performed in a single run using two passes O(m · ops(f )) (forward
and back) for f : Rn → Rm

• Note: this is central to the backpropagation algorithm used to train neural networks because it
needs only one pass for the n-dimensional function to find the gradient.

• implemented through two different operation overloading functions (for forward and backward)

• Many open-source software implementations are available: eg, Tensorflow
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Forward implements:

Backward implements:
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Complementing each intermediate variable vi with an adjoint

v̄i =
∂yj
∂vi

which represents the sensitivity of a considered output yj with respect to changes in vi .
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Example

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)
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Example: Forward Accumulation

y = f (x1, x2) = ln(x1) + x1x2 − sin(x2)

O(n · ops(f ))
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Example: Reverse Accumulation

O(m · ops(f ))
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Summary

• Derivatives are useful in optimization because they provide information about how to change a
given point in order to improve the objective function

• For multivariate functions, various derivative-based concepts are useful for directing the search
for an optimum, including the gradient, the Hessian, and the directional derivative

• computation of derivatives in computer programs can be classified into four categories:

1. manually working out derivatives and coding them (error prone and time consuming)

2. numerical differentiation using finite difference approximations
Complex step method can eliminate the effect of subtractive cancellation error when
taking small steps

3. symbolic differentiation using expression manipulation in computer algebra systems

4. automatic differentiation, (aka algorithmic differentiation)
forward and reverse accumulation on computational graphs
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3. Bracketing



Bracketing

A derivative-free method to identify an interval containing a local minimum and then successively
shrinking that interval
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Unimodality

There exists a unique optimizer x∗ such that f is monotonically decreasing for x ≤ x∗ and
monotonically increasing for x ≥ x∗
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Finding an Initial Bracket

Given a unimodal function, the global minimum is guaranteed to be inside the interval [a, c] if
f (a) > f (b) < (c)
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Finding an Initial Bracket

Example of bracket_minimum on a function

reverses direction between the first and second iteration and expands until a minimum is bracketed
in the fourth iteration.
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For unimodal functions, when function evaluations are limited, what is the maximal shrinckage we
can achieve?
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When restricted to only 2 function evaluations (queries) the most we can guarantee to shrink our
interval is by just under a factor of 2.

yeilds a factor of 3.

for ϵ→ 0 yields a factor of just less than 2
Bracketing 3.6



When restricted to only 3 function evaluations (queries) the most we can guarantee to shrink our
interval is by a factor of 3.
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Fibonacci Search

When restricted to n functions evaluations following the previous strategy, we are guaranteed to
shrink our interval by a factor of Fn+1.
Fibonacci numbers: sum of previous two,
1, 1, 2, 3, 5, 8, 13, ...

Fn =


0 if n = 0
1 if n = 1, 2
Fn−1 + Fn−2 otherwise

The length of every interval constructed can be
expressed in terms of the final interval times a
Fibonacci number.
- final, smallest interval has length In,
- second smallest interval has length In−1 = F3In
- third smallest interval has length In−2 = F4In,
and so forth.
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Fibonacci Search Algorithm

For a unimodal function f in the interval [a, b], we want to shrink the interval within n iterations.
(At each iteration we want to shrink by a factor ϕ).

bk+1 − ak+1 =
Fn−k+1

Fn−k+2
(bk − ak)

Therefore:

bn − an =
F2

F3
(bn−1 − an−1)

=
F2

F3

F3

F4
. . .

Fn

Fn+1
(b1 − a1)

=
1

Fn+1
(b1 − a1)

Closed-form expression (Binet’s formula):

Fn =
ϕn − (1− ϕ)n√

5
,

ϕ = (1 +
√

5)/2 ≈ 1.61803 is the golden ratio.

Fn+1

Fn
= ϕ

1− sn+1

1− sn
, s = (1−

√
5)(1 +

√
5) ≈ −0.382
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Suppose we have an unimodal function f in the interval [a, b] and a tolerance ϵ = 0.01. Let k = 1.

1. dk = ak +
Fn−k+1
Fn−k+2

(bk − ak)

2. if k ̸= n − 1:

ck = ak +

(
1− Fn−k+1

Fn−k+2

)
(bk − ak)

otherwise: ck = dk + ϵ(ak − dk)

3. if f (ck) < f (dk): bk+1 = dk , dk+1 = ck , ak+1 = ak
otherwise: ak+1 = bk , bk+1 = ck , dk+1 = dk

4. k = k + 1, if k = n go to step 5, else go to step 2

5. return (ak , bk) if (ak < bk) else (bk , ak)

Fn

Fn+1
= ρn =

1− sn

ϕ(1− sn+1)
≈ 0.6





Golden Section Search

lim
n→∞

Fn+1

Fn
= lim

n→∞

1
ρn

= lim
n→∞

ϕ
1− sn+1

1− sn
= ϕ ≈ 1.61803

1
ϕ
≈ 0.618
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Comparison
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Comparison
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Quadratic Fit Search

• Leverages ability to analytically minimize quadratic functions

• Iteratively fits quadratic function to three bracketing points
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Quadratic Fit Search

• If a function is locally nearly quadratic, the minimum can be found after several steps
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Using Linear Algebra

• We assume that the variable y is related to x ∈ Rn quadratically, so for some constants
b0, b1, b2:

y = b0 + b1x + b2x
2

• Given the set of m points (y1, x1, ), . . . , (y3, x3) in the ideal case, we have that
yi = b0 + b1xi + b2x

2
i , for all i = 1, 2, 3. In matrix form:

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3



b0

b1

b2

 =


y1

y2

y3


This can be written as Az = y to emphasize that z are our unknowns and A and y are given.
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In Python

In polynomial regression, the m × (n + 1) matrix A is called a Vandermonde matrix
(a matrix with entries aij = xn+1−j

i , j = 1..n + 1).
NumPy’s np.vander() is a convenient tool for quickly constructing a Vandermonde matrix, given
the values xi , i = 1..m, and the number of desired columns (n + 1).

>>> print(np.vander([2, 3, 5], 2))
[[2 1] # [[2**1, 2**0]
[3 1] # [3**1, 3**0]
[5 1]] # [5**1, 5**0]]

>>> print(np.vander([2, 3, 5, 4], 3))
[[ 4 2 1] # [[2**2, 2**1, 2**0]
[ 9 3 1] # [3**2, 3**1, 3**0]
[25 5 1] # [5**2, 5**1, 5**0]
[16 4 1]] # [4**2, 4**1, 4**0]
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In Python

A = np.vander(x,4)

coeff = np.linalg.solve(A,y) ## Error!! Why?

B = A.T @ A
z = np.linalg.inv(B) @ A.T @ y

coeff = np.linalg.lstsq(A, y)[0]
np.allclose(z,coeff)

f=np.poly1d(coeff)
plt.plot(x, y, 'o', label='Original data', ↪→

↪→markersize=2)
plt.plot(x, f(x), 'r', label='Fitted line')
plt.legend()
plt.show()

ex2.py
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Shubert-Piyavskii Method

• The Shubert-Piyavskii method is guaranteed to find the global minimum of any bounded
function

• but requires that the function be Lipschitz continuous

• A function is Lipschitz continuous if there is an upper bound on the magnitude of its
derivative. A function f is Lipschitz continuous on [a, b] if there exists an ℓ > 0 such that:

|f (x)− f (y)| ≤ ℓ|x − y |, ∀x , y ∈ [a, b]
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Bisection Method

• Intermediate value theorem: If f is continuous on [a, b], and there is some y ∈ [f (a), f (b)],
then there exists at least one x ∈ [a, b], such that f (x) = y .

• Used in root-finding methods

• When applied to f ′(x), can be used to find minimum of f

• if sign(f ′(a)) ̸= sign(f ′(b)), or equivalently, f ′(a)f ′(b) ≤ 0 then [a, b] is guaranteed to contain
a zero.
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Bisection method

• Cut the bracketed region [a, b] in half with every iteration

• Evaluate the midpoint (a+ b)/2

• form a new bracket from the midpoint and whichever side that continues to bracket a zero.

• Terminate after a fixed number of iterations.

• Guaranteed to converge within ϵ of x∗ within lg2(|b − a|/ϵ)
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Summary

• Many optimization methods shrink a bracketing interval, including Fibonacci search, golden
section search, and quadratic fit search

• The Shubert-Piyavskii method outputs a set of bracketed intervals containing the global
minima, given the Lipschitz constant

• Root-finding methods like the bisection method can be used to find where the derivative of a
function is zero
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4. Local Descent



Preface

For multivariate functions, we have argued that:

• derivatives can have exponential growth in the resulting analytical expression

• calculating zeros might be challenging

Hence, minimizing by solving ∇f (x) = 0 may be computationally demanding.
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Descent Direction Iteration

Descent Direction Methods use a local model to incrementally improve design point until some
convergence criteria is met

1. Check termination conditions at xk ; if not met, continue.

2. Decide descent direction dk using local information

3. Decide step size (= magnitude of the overall step = αk , since commonly ||dk ||2 = 1)

4. Compute next design point xk+1

xk+1 ← xk + αkdk
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Line Search for Step Size

Assuming we have the search direction:

• Used to compute α

• Using the techniques discussed from previous classes, solve:

minimizeαf (x + αd )

• Often this is computed approximately to reduce cost
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Line Search: Alternatives

Step size:

• Fixed α called learning rate (commonly ||dk ||2 = 1 not imposed)

• Decaying step factor

αk = α1γ
k−1 for γ ∈ [0, 1]

Decaying step factor is often required in convergence proofs
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Approximate Line Search

• If function calls are expensive, rather than finding the minimum along a search direction, find
a point of sufficient decrease

f (xk+1) ≤ f (xk) + βα∇dk
f (xk)

• β ∈ [0, 1], usually β = 1× 10−4

• Backtracking line search starts with a large step and then backs off

def backtracking_line_search(f, grad, x, d, alpha_0=1, p=0.5, beta=1e-4):
y, g, alpha = f(x), grad(x), alpha_0
while ( f(x + alpha * d) > y + beta * alpha * np.dot(g, d) ) :

alpha *= p
return alpha
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Approximate Line Search: Example

Local Descent 4.6



Approximate Line Search

Building on backtracking line search are the Wolfe Conditions each sufficient to guarantee
convergence to a local minimum.

1. First Wolfe Condition: Sufficient Decrease

f (xk+1) ≤ f (xk) + βα∇dk
f (xk)

2. Second Wolfe Condition: Curvature Condition

∇dk
f (xk+1) ≥ σ∇dk

f (xk)

β < σ < 1 with
- σ = 0.1 with conjugate gradient method
- σ = 0.9 with Newton method
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Approximate Line Search

The curvature condition ensures the second-order function approximations have positive curvature

∇dk
f (xk+1) ≥ σ∇dk

f (xk)
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Approximate Line Search

Regions satisfying the curvature condition

∇dk
f (xk+1) ≥ σ∇dk

f (xk)
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Approximate Line Search: Example
Consider approximate line search on f (x1, x2) = x2

1 + x1x2 + x2
2

from x = [1, 2] in the direction d = [−1,−1], gradient at x is g = [4, 5]
using a maximum step size of 10, a reduction factor of 0.5,
first Wolfe condition parameter β = 1× 10−4, second Wolfe condition parameter σ = 0.9.

first Wolfe condition (f (x + αd ) ≤ f (x) + βα(gT · d )):

α = 10 : f ([1, 2] + 10 · [−1,−1]) ≤ 7 + 1× 10−410[4, 5]T [−1,−1] =⇒ 217 ̸≤ 6.991

α = 10 · 0.5 = 5 : f ([1, 2] + 5 · [−1,−1]) ≤ 7 + 1× 10−45[4, 5]T [−1,−1] =⇒ 37 ̸≤ 6.996

α = 2.5 : f ([1, 2] + 2.5 · [−1,−1]) ≤ 7 + 1× 10−42.5[4, 5]T [−1,−1] =⇒ 3.25 ≤ 6.998

The candidate design point x ′ = x + αd = [−1.5,−.0.5] is checked against the second Wolfe
condition ∇d f (x ′) ≥ σ∇d f (x):

[−3.5,−2.5] · [−1,−1] ≥ σ[4, 5] · [−1,−1] =⇒ 6 ≥ −8.1

Approximate line search terminates with x = [−1.5,−0.5].
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Approximate Line Search

Regions where the strong curvature condition is satisfied

|∇dk
f (xk+1)| ≤ −σ∇dk

f (xk)
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Approximate Line Search

• The sufficient decrease condition with the strong curvature condition form the strong Wolfe
conditions.

• Satisfying the strong Wolfe conditions requires a more complicated algorithm

Strong backtracking line search:

1. Bracketing Phase: tests successively larger step sizes to bracket an interval [αk−1, αk ]
guaranteed to contain step lengths satisfying the Wolfe conditions.

2. Zoom Phase: shrink the interval using bisection to find point satisfying the strong Wolfe
conditions
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Approximate Line Search
1. Bracketing Phase
An interval guaranteed to contain step lengths satisfying the Wolfe conditions is found when one of
the following conditions hold:

f (x + αd ) ≥ f (x)
f (x + αd ) > f (x) + βα∇d f (x)
∇f (x + αd ) ≥ 0
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Approximate Line Search

1. Braketing Phase + zoom phase (α5)
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Trust Region Methods

• Descent methods can place too much trust in their first and second order information

• A trust region is the local area of the design space where the local model is believed to be
reliable.

• Trust region methods, or restricted step methods, limit the step size to ensure local
approximation error is minimized

• If the improvement matches the predicted value, the trust region is expanded; otherwise it is
contracted
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Trust Region Methods
• x ′ is new design point

• f̂ (x ′) is local function approximation, eg, second-order Taylor approximation

• δ is trust region radius

minimizex′ f̂ (x ′)

subject to ||x − x ′|| ≤ δ

Constrained optimization problem.
It can be solved efficiently if f̂ quadratic
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Trust Region Methods

δ can be expanded or contracted based on performance

η =
actual improvement

predicted improvement
=

f (x)− f (x ′)

f (x)− f̂ (x ′)

If η < η1 contract
if η > η2 expand
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Trust Region Methods: Example

Trust regions can be also non circular.
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Trust Region Methods

Termination Conditions (commonly used together):

• Maximum Iterations: k > kmax

• Aboslute Improvement: f (xk)− f (xk+1) < ϵa

• Relative Improvement: f (xk)− f (xk+1) < ϵr |f (xk)|

• Gradient Magnitude: ||∇f (xk+1)|| < ϵg

Then random restart.
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Summary

• Descent direction methods incrementally descend toward a local optimum.

• Univariate optimization can be applied during line search.

• Approximate line search can be used to identify appropriate descent step sizes.

• Trust region methods constrain the step to lie within a local region that expands or contracts
based on predictive accuracy.

• Termination conditions for descent methods can be based on criteria such as the change in the
objective function value or magnitude of the gradient.
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5. First-Order Methods



Descent Direction Methods

How to select the descent direction?

• first-order methods that rely on gradient

• second-order methods that rely on Hessian information

Advantages of first order methods:
• cheap iterations: good for small and large scale optimization embedded optimization
• helpful because easy to warm restart

Limitations of first order methods:
• not hard to find challenging instances for them.
• can converge slowly.
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Gradient Descent

The steepest descent direction at xk , at kth iteration of a local descent iterative method, is
the one opposite to the gradient (gradient descent):

dk = − ∇f (xk)
∥∇f (xk)∥

Guaranteed to lead to improvement if:

• f is smooth
• step size is sufficiently small
• xk is not a stationary point (ie, ∇f (xk) = 0)
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Gradient Descent: Example

• Suppose we have

f (x) = x1x
2
2

• The gradient is ∇f = [x2
2 , 2x1x2]

• xk = [1, 2]

dk+1 = − ∇f (xk)
∥∇f (xk)∥

=
[−4,−4]√
16 + 16

=

[
− 1√

2
,− 1√

2

]
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Implementation

class DescentMethod:
alpha: float

class GradientDescent(DescentMethod):
def __init__(self, f, grad, x, alpha):

self.alpha = alpha

def step(self, f, grad, x):
alpha, g = self.alpha, grad(x)
return x - alpha * g

First-Order Methods 5.5



Gradient Descent

Theorem: The next direction is orthogonal to the current direction.

Proof:

α∗
k = argmin

α
f (xk + αdk)

∇f (xk + α∗
kdk) = ∇dk

f (xk) = 0 because α∗
k is minimum

∇f (xk + α∗
kdk)

Tdk = 0 because directional derivative: ∇s f (x) = ∇f (x)T s

dk+1 = − ∇f (xk + α∗
kdk)

∥∇f (xk + α∗
kdk)∥

gradient descent

dk+1 · dk = − ∇f (xk + α∗
kdk)

∥∇f (xk + α∗
kdk)∥

· dk = 0 dT
k+1dk = 0 =⇒ dk+1 ⊥ dk
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Gradient Descent: Example

2D Rosenbrock function

f (x , y) = (a− x)2 + b(y − x2)2

Narrow valleys not aligned with gradient can be a
problem
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Conjugate Gradient

[Hestenes and Stiefel, 1950s]

For A symmetric positive definite:

Ax = b ⇐⇒ minimize
x

f (x) def
=

1
2
xTAx − bTx

∇f (x) = Ax − b def
= r(x)
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Conjugate Direction
Def.: A set of nonzero vectors {d0,d1, . . . ,dℓ} is said to be conjugate with respect to the
symmetric positive definite matrix A if

dT
i Adj = 0, for all i ̸= j

(the vectors are linearly independent. Generally, not orthogonal.)

Theorem: Given an arbitrary x0 ∈ Rn and a set of conjugate vectors {d0,d1, . . . ,dn−1} the
sequence {xk} generated by

xk+1 = xk + αkdk

where αk is the analytical solution of min
α

f (xk + αdk) given by:

αk = − rTk dk

dT
k Adk

(aka, conjugate direction algorithm) converges to the solution x∗ of the linear system and
minimization problem in at most n steps.
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Proof:

min
α

f (xk + αdk)

We can compute the derivative with respect to α:

∂

∂α
f (x + αd ) =

∂

∂α
(x + αd )TA(x + αd )− bT (x + αd )(+c)

= dTA(x + αd )− dTb

= dT (Ax − b) + αdTAd

Setting ∂f (x+αd )
∂α = 0 results in:

αk = −dT
k (Axk − b)
dT
k Adk

= −dT
k r(xk)
dT
k Adk

(1)

First-Order Methods 5.11



• Since the directions {dk} are linearly independent, they must span the whole space Rn.
Hence, there is a set of scalars σk such that:

x∗ − x0 = σ0d0 + σ1d1 + . . .+ σn−1dn−1

• By premultiplying this expression by dT
k A and using the conjugacy property, we obtain:

σk =
dT
k A(x∗ − x0)

dT
k Adk

(2)

• If xk is generated by conjugate direction algorithm, then we have

xk = x0 + α0d0 + α1d1 + . . .+ αkdk−1

• By premultiplying this expression by dT
k A and using the conjugacy property, we have that

dT
k A(xk − x0) = 0

• and therefore

dT
k A(x∗ − x0) = dT

k A(x∗ − xk + xk − x0) = dT
k A(x∗ − xk) + dT

k A(xk − x0) =

= dT
k A(x∗ − xk) = dT

k (b − Axk) = −dT
k rk .

• Using this result in (2) and comparing with (1) we conclude αk = σk .



If the matrix A is diagonal, the contours of the
function f (·) are ellipses whose axes are aligned
with the coordinate directions

If A is not diagonal, its contours are elliptical, but
they are usually not aligned with the coordinate
directions.
Transform the problem to make A diagonal and
minimize along the coordinate directions.
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Conjugate Gradient Method
• The conjugate gradient method is a conjugate direction method with the property: In

generating its set of conjugate vectors, it can compute a new vector dk by using only the
previous vector dk−1. Hence, little storage and computation requirements.

dk = −rk + βkdk−1

where βk is to be determined such that dk−1 and dk must be conjugate with respect to A. By
premultiplying by dT

k−1A and imposing that dT
k−1Adk = 0 we find that

βk =
rTk Adk−1

dT
k−1Adk−1

• Larger values of β indicate that the previous descent direction contributes more strongly.
• d0 is commonly chosen to be the steepest descent direction at x0

• Advantage with respect to steepest descent: implicitly reuses previous information about the
function and thus better convergence.
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Algorithm CG

Basic version:

Input: f , x0
Output: x∗

Set r0 ← Ax0 − b,d0 ← r0, k ← 0;
while rk ̸= 0 do

αk ← −dT
k r(xk )
dT
k Adk

;

xk+1 ← xk + αkdk ;
rk+1 ← Axk+1 − b;

βk+1 ←
rTk+1Adk

dT
k Adk

;

dk+1 ← −rk+1 + βk+1dk ;
k ← k + 1;

Computationally improved version:

Input: f , x0
Output: x∗

Set r0 ← Ax0 − b,d0 ← r0, k ← 0;
while rk ̸= 0 do

αk ← − r(xk )T r(xk )
dT
k Adk

;

xk+1 ← xk + αkdk ;
rk+1 ← rk + αkAdk ;

βk+1 ←
rTk+1rk+1

rTk rk
;

dk+1 ← −rk+1 + βk+1dk ;
k ← k + 1;

• we never need to know the vectors x , r , and d for more than the last two iterations.

• major computational tasks: the matrix–vector product Adk , inner products dT
k Adk and

rTk+1rk+1, and three vector sums
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NonLinear Conjugate Gradient Methods

• The conjugate gradient method can be applied to nonquadratic functions as well.

• Smooth, continuous functions behave like quadratic functions close to a local minimum

• but! we do not know the value of A that best approximates f around xk . Instead, several
choices for βk tend to work well:

• Two changes:
• αk is computed by solving an approximate line search
• the residual r , (it was simply the gradient of f ), must be replaced by the gradient of the

nonlinear objective f .
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NonLinear Conjugate Gradient Methods

Fletcher-Reeves Method:
Input: f , x0
Output: x∗

Evaluate f0 = f (x0),∇f0 = ∇f (x0);
Set d0 ← −∇f0, k ← 0;
while ∇fk ̸= 0 do

Compute αk by line search and set
xk+1 ← xk + αkdk ;

Evaluate ∇fk+1;

βFR
k+1 ←

∇f Tk+1∇fk+1

∇f Tk ∇fk
;

dk+1 ← −∇fk+1 + βFR
k+1dk ;

k ← k + 1;

Polak-Ribière:
Input: f , x0
Output: x∗

Evaluate f0 = f (x0),∇f0 = ∇f (x0);
Set d0 ← −∇f0, k ← 0;
while ∇fk ̸= 0 do

Compute αk by line search and set
xk+1 ← xk + αkdk ;

Evaluate ∇fk+1;

βPR
k+1 ←

∇f Tk+1(∇fk+1−∇fk )

∇f Tk ∇fk
;

dk+1 ← −∇fk+1 + βFR
k+1dk ;

k ← k + 1;

PR with:

β+
k+1 = max{βPR

k+1, 0}

becomes PR+ and guaranteed to converge (satisfies first Wolfe conditions).
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The conjugate gradient method with the Polak-Ribière update. Gradient descent is shown in gray.
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Accelerated Descents

• Addresses common convergence issues
• Some functions have regions with very small gradients (flat surface) where gradient descent

gets stuck
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Momentum

Rosenbrock function with b = 100

Momentum overcomes these issues by replicating the effect of physical momentum
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Momentum

Momentum update equations:

vk+1 = βvk − α∇f (xk)
xk+1 = xk + vk+1

import numpy as np

class Momentum(DescentMethod):
alpha: float # learning rate
beta: float # momentum decay
v: np.array # momentum

def __init__(self, alpha, beta, f, grad, x):
self.alpha = alpha
self.beta = beta
self.v = np.zeros_like(x)

def step(self, grad, x):
self.v = self.beta * self.v - self.alpha * ↪→

↪→grad(x)
return x + self.v
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Nesterov Momentum
Issue of momentum: steps do not slow down enough at the bottom of a valley, overshoot.

Nesterov Momentum update equations:

vk+1 = βvk − α∇f (xk + βvk)
xk+1 = xk + vk+1
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Adagrad

• Instead of using the same learning rate for all components of x ,
Adaptive Subgradient method (Adagrad) adapts the learning rate for each component of x .
For each component of x , the update equation is

xi,k+1 = xi,k −
α

ϵ+
√
si,k
∇fi (xk)

where

si,k =
k∑

j=1

(∇fi (xj))2

ϵ ≈ 1× 10−8, α = 0.01

• components of s are strictly nondecreasing, hence learning rate decreases over time
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RMSProp

• Extends Adagrad to avoid monotonically decreasing learning rate by maintaining a decaying
average of squared gradients

ŝk+1 = γŝk + (1− γ)
(
∇f(xk)⊙∇f (xk)

)
, γ ∈ [0, 1], ⊙ element-wise product

Update Equation

xi,k+1 = xi,k −
α

ϵ+
√
ŝi,k
∇fi (xk)

= xi,k −
α

ϵ+ RMS(∇fi (xk))
∇fi (xk)

root mean square: For n values {x1, x2, . . . , xn}

xRMS =

√
1
n
(x1

2 + x2
2 + · · ·+ xn2).
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AdaDelta

Also extends Adagrad to avoid monotonically decreasing learning rate
Modifies RMSProp to eliminate learning rate parameter entirely

xi,k+1 = xi,k −
RMS(∆xi )

ϵ+ RMS(∇fi (x))
∇fi (xk)
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Adam

• The adaptive moment estimation method (Adam), adapts the learning rate to each
parameter.

• stores both an exponentially decaying gradient like momentum and an exponentially decaying
squared gradient like RMSProp and Adadelta

• At each iteration, a sequence of values are computed

Biased decaying momentum vk+1 = βvk − α∇f (xk)
Biased decaying squared gradient sk+1 = γsk + (1− γ) (∇f (xk)⊙∇f (xk))

Corrected decaying momentum v̂k+1 = vk+1/(1− γv ,k)

Corrected decaying squared gradient ŝk+1 = sk+1/(1− γs,k)

Next iterate xk+1 = xk + αv̂k+1/(ϵ+
√

ŝk+1)

• Defaults: α = 0.001, γv = 0.9, γs = 0.999, ϵ = 1× 10−8
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Adamax

Same as Adam, but based on the max-norm L∞.

sk+1 = γ∞sk + (1− γ∞) (∥∇f (xk)∥∞)

= max (γsk , ∥∇f (xk)∥∞)
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Nadam

Nadam

• Nesterov-accelerated Adaptive Moment Estimation

• Adam is basically RMSProp with momentum

• We have seen that Nesterov is often more efficient

• Welcome to Nadam: Adam which uses the Nesterov momentum.
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Hypergradient Descent

• Learning rate determines how sensitive the method is to the gradient signal.

• Many accelerated descent methods are highly sensitive to hyperparameters such as learning
rate.

• Applying gradient descent to a hyperparameter of an underlying descent method is called
hypergradient descent

• Requires computing the partial derivative of the objective function with respect to the
hyperparameter
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Hypergradient Descent

First-Order Methods 5.31



Summary

• Gradient descent follows the direction of steepest descent.

• The conjugate gradient method can automatically adjust to local valleys.

• Descent methods with momentum build up progress in favorable directions.

• A wide variety of accelerated descent methods use special techniques to speed up descent.

• Hypergradient descent applies gradient descent to the learning rate of an underlying descent
method.
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Descent Direction Methods

How to select the descent direction?

• first-order methods that rely on gradient

• second-order methods that rely on Hessian information

Advantages of second order methods in descent algorithms:

• way of accelerating the iteration [Davidon mid 1950s]

• additional information that can help improve the local model for informing the selection of

• directions and

• step lengths
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Second-Order Methods

• Locally approximate function as quadratic

• Comparison of first-order and second order approximations
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Newton’s Method – Univariate

• Approximate a function using second-order Taylor series expansion

• analytically obtain the location where a quadratic approximation has a zero gradient.

• use that location as the next iteration to approach a local minimum.

• Univariate function

q(x) = f (xk) + (x − xk)f
′(xk) +

(x − xk)
2

2
f ′′(xk)

dq(x)
dx

= f ′(xk) + (x − xk)f
′′(xk) = 0

xk+1 = xk −
f ′(xk)

f ′′(xk)

≡ finding roots of derivative function
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Newton’s Method - Multivariate

• Multivariate function

f (x) ≈ q(x) = f (xk) +∇f (xk)T (x − xk) +
1
2
(x − xk)THk(x − xk)

• H is the Hessian matrix
• Evaluate the gradient and set it to zero:

∇q(x) = ∇f (xk) + H(xk)(x − xk) = 0

• Multivariate update rule

xk+1 = xk − H−1
k ∇f (xk)

• (If f is quadratic and its Hessian is positive definite, then the update converges to the global
minimum in one step. )
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Algorithm

Input: ∇f ,H, x0, ϵ, kmax

Output: x∗

Set k = 0,∆ = 1, x = x0;
while ∥∆∥ > ϵ and k ≤ kmax do

∆ = H(x)−1∇f (x);
x = x −∆;
k = k + 1;

It can be modified to only give a descent direction d = −H(x)−1∇f (x) and leave the step size to
be determined with line search.
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Newton’s method – Example
Minimize Booth’s function:

f (x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2

• x0 = [9, 8]
• The gradient of Booth’s function is:

∇f (x) = [10x1 + 8x2 − 34, 8x1 + 10x2 − 38]

• The Hessian of Booth’s function is:

H(x) =

10 8

8 10
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• The first iteration of Newton’s method yields:

x1 = x0 − H(x0)
−1∇f (x0)

=

9

8

−
10 8

8 10


−1

·

10 · 9 + 8 · 8− 34

8 · 9 + 10 · 8− 38

 =

9

8

−
10 8

8 10


−1

·

120

114

 =

1

3



• Second iteration: The gradient at x1 is zero, so we have converged after a single iteration.
The Hessian is positive definite everywhere, so x1 is the global minimum.
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Newton’s Method

Common causes of error in Newton’s method
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Newton’s Method

• has quadratic convergence, meaning the difference between the minimum and the iterate is
approximately squared with every iteration.

• This rate of convergence holds for Newton’s method starting from x0 within an interval
I = [x∗ − δ, x∗ + δ], for a root x∗, if

1. f ′′(x) ̸= 0 for all points in I ,

2. f ′′′(x) is continuous on I , and

3. 1
2

∣∣∣ f ′′′(x0)f ′′(x0)

∣∣∣ < c
∣∣∣ f ′′′(x∗)
f ′′(x∗)

∣∣∣ for some c <∞
sufficient closeness condition, ensuring that the function is sufficiently approximated by
the Taylor expansion and no overshoot.
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Secant Method – Univariate

• For univariate functions, if the second derivative is unknown, it can be approximated using the
secant method

f ′′(xk) =
f ′(xk)− f ′(xk−1)

xk − xk−1

• Update equation

xk+1 = xk −
xk − xk−1

f ′(xk)− f ′(xk−1)
f ′(xk)

• It requires an additional initial design point and suffers from the same problems as Newton’s
method and may take more iterations to converge due to approximating the second derivative.
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11. Secant Method

12. Quasi-Newton Method
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Quasi-Netwon Methods – Multivariate

• Automatic differentiation tools may not be applicable in many situations, and it may be much
more costly to work with second derivatives in automatic differentiation software than with the
gradient.

• Quasi-Newton methods, like steepest descent, require only the gradient of the objective
function to be supplied at each iterate.

• By measuring the changes in gradients, they construct a model of the objective function that
is good enough to produce superlinear convergence.

• The improvement over steepest descent is dramatic, especially on difficult problems.
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Quasi-Netwon Methods – Multivariate
Use an approximation Qk ≈ H−1(xk)

Input: x0, convergence tolerance ϵ > 0, Q0 (typically the n × n identity matrix)
Output: x∗

Set k ← 0;
while ∥∇f (xk)∥ > ϵ do

Compute search direction d (xk) = −Qk∇f (xk);
Set xk+1 = xk + αkd (xk) where αk is computed from a line search procedure to satisfy
the Wolfe conditions;

Define δk+1
def
= xk+1 − xk and γk+1

def
= ∇f (xk+1)−∇f (xk);

Compute Qk+1;
k ← k + 1;

• Davidon-Fletcher-Powell (DFP) method
• Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
• Limited-memory BFGS (L-BFGS) method
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Davidon-Fletcher-Powell (DFP) method

Qk+1 = Qk −
Qkγkγ

T
k Qk

γT
k Qkγk

+
δkδ

T
k

δTk γk

where all terms on the right hand side are evaluated at the same iteration k .

The update for Q in the DFP method has three properties:

• Q remains symmetric and positive definite.

• If f (x) = 1
2x

TAx + bTx + c , then Q = A−1. Thus the DFP has the same convergence
properties as the conjugate gradient method.

• For high-dimensional problems, storing and updating Q can be significant compared to other
methods like the conjugate gradient method.
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) method

Qk+1 = Qk −
(
δkγ

T
k Qk + Qkγkδ

T
k

δTk γk

)
+

(
1 +

γT
k Qkγk

δTk γk

)
δkδ

T
k

δTk γk

BFGS better than DFP with approximate line search but still uses an n × n dense matrix.

Theorem: Suppose that f is twice continuously differentiable and that the iterates generated by the
BFGS algorithm converge to a minimizer x∗ at which the Hessian matrix G is Lipschitz continuous
Suppose also that the sequence ∥xk − x∗∥ converges to zero rapidly enough that∑∞

k=1 ∥xk − x∗∥ <∞. Then xk converges to x∗ at a superlinear rate (ie, faster than linear).
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Limited-memory BFGS (L-BFGS) method
For large-scale unconstrained optimization
It stores the last m values for δ and γ rather than the full inverse Hessian (i = 1 oldest, i = m last).
Compute d at x as d = −zm using:

qm = ∇f (xk) qi = qi+1 −
δTi+1qi+1

γT
i+1δi+1

γi+1, i = m − 1, . . . , 1

z0 =
δm ⊙ δm ⊙ qm

γT
mγm

zi = zi−1 + δi−1

(
δTi−1qi−1

γT
i−1δi−1

−
γT
i−1zi−1

γT
i−1γi−1

)
, i = 1, ...,m

For minimization, the inverse Hessian Q must remain positive definite.
The initial Hessian is often set to the diagonal of

Q0 =
γ0δ

T
0

γT
0 γ0

Computing the diagonal for the above expression and substituting the result into z0 = Q0q0 results
in the equation for z0.
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L-BFGS

(L-BFGS two-loop recursion)
Input:
Output: Qk∇fk = z
Set q ← ∇fk ;
for i = k − 1, k − 2, . . . , k −m do

αi ← δTi q
γi ·δT

i

;

q ← q − αi · γi ;

z ← Q0q;
for i = k −m, k −m + 1, . . . , k − 1
do

β ← γT
i ·r

γi ·δT
i

;

z ← z + δi (zi − β);

Input:
Output: x∗

Choose starting point x0, integer m > 0;
k ← 0;
while not convergence do

Set Q0;
Compute dk ← −Qk∇fk from Algorithm
on the left;

Compute xk+1 ← xk + αkdk , where αk is
chosen to satisfy the Wolfe conditions;

if k > m then
Discard the vector pair {δk−m,γk−m}
from storage;

Compute and save δk = xk+1 − xk ,
γk = ∇fk+1 −∇fk ;
k ← k + 1;
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BFGS Methods - Comparison
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Summary

• Incorporating second-order information in descent methods often speeds convergence.

• Newton’s method is a root-finding method that leverages second-order information to quickly
descend to a local minimum.

• The secant method and quasi-Newton methods approximate Newton’s method when the
second-order information is not directly available.

• In Python, methods implemented in the module scipy
https://docs.scipy.org/doc/scipy/tutorial/optimize.html
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Derivative-Free Methods

• Also called direct search methods, zero-order, black box, pattern search

• Direct method search using function evaluations only
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Cyclic Coordinate Search

• Also known as coordinate descent, or taxicab
search

• Performs line search in alternating
coordinate directions

x1,1 = argminx1 f (x1, x2,0, x3,0, . . . , xn,0)

x2,1 = argminx2 f (x1,1, x2, x3,1, . . . , xn,1)
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Cyclic Coordinate Search

• Can be augmented to accelerate convergence

• For every full cycle starting with optimizing
x1 along [1, 0, . . . , 0] and ending with xn+1
after optimizing along [0, 0, . . . , 1], an
additional line search is conducted along the
direction xn+1 − x1.
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Powell’s Method

• Similar to Cyclic Coordinate Search, but can
search in non-orthogonal directions

• Drops the oldest search direction in favor of
the overall direction of progress

• It can lead the search directions to become
linearly dependent and the search directions
can no longer cover the full design space,
and the method may not be able to find the
minimum
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Powell’s Method

Input: f , x0
Output: x∗

search directions u1 = e1, . . . ,un = ei ;
while not converged do

for i in {1, . . . , n} do
xi+1 ← line_search(f , xi ,ui );

for i in {1, . . . , n − 1} do
ui ← ui+1 ;

un ← xn+1 − x1;

• search directions can become linearly dependent and no longer cover the full design space.

• peridocally reset the diections to the canonical basis.

Direct Methods 7.5



Hooke-Jeeves

• Evaluate f (x) and f (x ± αei ) for a given step size α in every coordinate direction from an
anchoring point x .

• It accepts any improvement it may find.
• If no improvements are found, it decreases the step size.
• The process repeats until the step size is sufficiently small.
• 2n evaluations for an n-dimensional problem
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Generalized Pattern Search

• Generalization of Hooke-Jeeves method
• A pattern P can be constructed from a set of directions D about an anchoring point x with a

step size α according to: P = {x + αd for each d ∈ D}
• Searches in set of directions that positively spans (nonnegative linear combination) search

space. (if D has full row rank and if Dx = −D1 with x ≥ 0
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Generalized Pattern Search
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Nelder-Mead Simplex Method

Uses simple algorithm to traverse search space using set of points defining a simplex
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Nelder-Mead

Simplex based method [Spendley et al. (1962)]
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Nelder-Mead (cont.)
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Nelder-Mead (cont.)

Nelder-Mead simplex method [Nelder and Mead, 1965]:
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Nelder-Mead (cont.)

Example:
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Nelder-Mead (cont.)
Algorithm: Simplex search

Let x1, . . . , xn+1 be vertices of a simplex
Let h: yh = maxi yi = max f (xi ) and

l : yl = mini yi = min f (xi )

Let x̄ be the centroid of points with i ̸= h and
d(xi , xj) the distance between two points xi and xj

(k ← 0)
Reflect iter. k : (k ← k + 1) Generate the reflection xR of xh

Case 1 if yl ≤ yR < yh then xh ← xR and go to Reflect
Case 2 else if yR < yl then

generate the expansion xE of xh
if yE < yl then xh ← xE and go to Reflect
else xh ← xR and go to Reflect

Case 3 else if yR > yi ,∀i ̸= h then xh ← min{yh, yR} and generate the contraction 1
if yC ≤ min{yh, yR} then xh ← xC and go to Reflect
else contraction 2 xi ← (xi + xl)/2
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DIRECT – Divided Rectangles

• Also called DIRECT for Divided RECTangles

• Recall from Shubert-Piyavskii, a Lipshitz constant is used to provide a lower bound on the
function, and a function evaluation is made where this bound is lowest
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DIRECT – Divided Rectangles

• The notion of Lipschitz continuity can be extended to multiple dimensions.
If f is Lipschitz continuous over a domain X with Lipschitz constant ℓ > 0, then for a given
design x0 and y = f (x0), the circular cone

f (x0)− ℓ ∥x − x0∥2

forms a lower bound of f

• Given m function evaluations with design
points {x1, x2, . . . , xm}, we can construct a
superposition of these lower bounds by
taking their maximum:

max
i

f (xi )− ℓ ∥x − xi∥2
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Multivariate DIRECT

• intervals → hyper-rectangles

• normalizes the search space to be the unit hypercube

• divide the rectangles into thirds along the axis directions

• larger rectangles for the points with lower function evaluations

• larger rectangles are prioritized for additional splitting

• when splitting a region without equal side lengths, only the longest dimensions are split
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Multivariate DIRECT
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Multivariate DIRECT
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the interval width can only take on powers of one-third, hence the interval half-width is∥∥ a−b
2

∥∥
2 =

∥∥∥ 3−h

2

∥∥∥
2

where h is the depth of the rectangle
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Summary

• Direct methods rely solely on the objective function and do not use derivative information.

• Cyclic coordinate search optimizes one coordinate direction at a time.

• Powell’s method adapts the set of search directions based on the direction of progress.

• Hooke-Jeeves searches in each coordinate direction from the current point using a step size
that is adapted over time.

• Generalized pattern search is similar to Hooke-Jeeves, but it uses fewer search directions that
positively span the design space.

• The Nelder-Mead simplex method uses a simplex to search the design space, adaptively
expanding and contracting the size of the simplex in response to evaluations of the objective
function.

• The divided rectangles algorithm extends the Shubert-Piyavskii approach to multiple
dimensions and does not require specifying a valid Lipschitz constant.
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Benchmarking in the COCO Platform

• Functions divided in suites.

• Functions, fi , within suites are distinguished by their identifier i = 1, 2, ....

• parametrized by the (input) dimension, n, and

• instance number, j . (j as an index to a continuous parameter vector setting, eg, search space
translations and rotations).

f ji ≡ f [n, i , j ] : Rn → R x 7→ f ji (x) = f [n, i , j ](x).

• Varying n or j leads to a variation of the same function i of a given suite.

• Fixing n and j of function fi defines an optimization problem instance (n, i , j) ≡ (fi , n, j)
that can be presented to the solver.
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Why?

Varying the instance parameter j represents a natural randomization for experiments in order to:

• generate repetitions on a single function for deterministic solvers, making deterministic and
non-deterministic solvers directly comparable (both are benchmarked with the same
experimental setup)

• average away irrelevant aspects of the function definition

• alleviate the problem of overfitting, and

• prevent exploitation of artificial function properties
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BBOB Functions

• All benchmark functions are scalable with the dimension.

• Most functions have no specific value of their optimal solution (they are randomly shifted in
x-space).

• All functions have an artificially chosen optimal function value (they are randomly shifted in
f -space).
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Runtime and Target Values

• Runtime of a solver on a problem is the hitting time condition.

• define a non-increasing quality indicator measure and prescribe a set of target values, t.

• target values are compared with the best so-far-seen f -value.

• For a single run, the solver run is successful on the problem instance (fi , n, j) when the
best-so-far f -value reaches the target value t.

• COCO collects hundreds of different target values from each single run.

• targets t(i , j) depend on the problem instance in a way to make problems comparable

• typically, target values are set to known or estimated optimal solution plus an added precision

• runtime is the number of f -evaluations needed to solve the problem (fi , n, j , t(i , j)).

• only runtimes to comparable target values can be aggregated among problem instances.
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Simulated Restarts

• If a solver does not hit the target t in a given single run, the run is considered to be
unsuccessful.

• The runtime of this single run remains undefined but is bounded from below by the number of
evaluations conducted during the run τ ∈ [T ,∞]

• T depends on the termination condition encountered. It can be the budget of evaluations.

• For hard problem instances COCO uses budget-based target values:
For any given budget, COCO selects from the finite set of recorded target values the easiest
(i.e., largest) target for which the expected runtime of all solvers (ERT) exceeds the budget.

• With unsuccessful runs: draw further runs from the set of tried problem instances, uniformly
at random with replacement, until find an instance, j , for which (fi , n, j , t(i , j)) is solved.
the runtime is then the sum of the overall time spend and associated to the initially unsolved
problem instance.
print: '|' if problem.final_target_hit, ':' if restarted and '.' otherwise.
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Aggregation

• Aggregation is to compute a statistical summary over a set or subset of problem instances over
which we assume a uniform distribution

• If we can distinguish between problems easily, for example, according to their input dimension,
we can use the information to select the solver, hence not worth aggregating data

• Empirical cumulative distribution functions of runtimes (runtime ECDFs)
• Absolute distributions vs Performance profiles (ECDFs of runtimes relative to the respective best

solver)
• aggregate runtimes from several targets per function (!?)

• arithmetic average, as an estimator of the expected runtime. The estimated expected runtime
of the restarted solver, ERT, is often plotted against dimension to indicate scaling with
dimension.
alternatives: average of log-runtimes ≡ geometric average or shifted geometric mean
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Reference

Nikolaus Hansen, Anne Auger, Raymond Ros, Olaf Mersmann, Tea Tušar & Dimo Brockhoff
(2021) COCO: a platform for comparing continuous optimizers in a black-box setting, Optimization
Methods and Software, 36:1, 114-144, DOI: 10.1080/10556788.2020.1808977
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• Employ randomness strategically to help explore design space

• Randomness can help escape local minima

• Increases chance of searching near the global minimum

• Typically rely on pseudo-random number generators to ensure repeatability

• Control over randomness and the exploration vs exploitation trade off.
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Noisy Descent

• Saddle points, where the gradient is very close to zero, can cause descent methods to select
step sizes that are too small to be useful

• add Gaussian noise at each descent step

xk+1 ← xk + α∇f (xk) + ϵk

ϵk ∼ N (0, σ2
k)

• σk = 1
k
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Stochastic Gradient Descent

• evaluates gradients using randomly chosen subsets of the training data (batches)

• significantly less expensive computationally than calculating the true gradient at every
iteration and yields same effect as noisy gradient approximation

• helping traverse past saddle points Convergence guarantees for stochastic gradient descent
require that the positive step sizes be chosen such that:

∞∑
k=1

αk =∞
∞∑
k=1

α2
k <∞

• ensure that the step sizes decrease and allow the method to converge, but not too quickly so
as to become stuck away from a local minimum
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Mesh Adaptive Direct Search

• Similar to generalized pattern search but uses random positive spanning directions

• Example: set of positive spanning sets constructed from nonzero directions d1, d2 ∈ {−1, 0, 1}.
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• Construct lower triangular matrix L sampling from:

{−1/
√
αk + 1,−1/

√
αk + 2, . . . , 1/

√
αk − 1}

• permute rows and columns of L randomly to obtain a matrix D whose columns correspond to
n directions that linearly span Rn. The maximum magnitude among these directions is 1/

√
αk

• add one additional direction dn+1 = −
∑n

i=1 di or add n additional directions dn+j = −dj

•

αk+1 ←

{
αk/4 if no improvement was found in this iteration
min(1, 4αk) otherwise

• If f (xk = xk−1 + αd ) < f (xk−1), then the queried point is xk−1 + 4αd = xk + 3αd
Stochastic Methods 8.16



Simulated Annealing

• often used on functions with many local minima due to its ability to escape local minima.

• a candidate transition from x to x ′ is sampled from a transition distribution T , eg,
multivariate Gaussian

x ′ = x + ϵ ϵ ∼ T

• Metropolis acceptance criterion:

p(x , x ′) =

{
1 if ∆ ≤ 0
e−

∆
t if ∆ > 0

∆ = f (x ′)− f (x)
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Annealing Plan

• a logarithmic annealing schedule

tk = t0
ln(2)

ln(k + 1)

guaranteed to asymptotically reach the global optimum under
certain conditions, but it can be slow in practice.

• exponential annealing schedule, more common, uses a simple
decay factor:

tk+1 = γtk

• fast annealing

tk =
t0
k
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Simulated Annealing

• Corana et al 1987 introduced variable step-size v
(separate directional components)

• cycle of random moves, one in each direction

x ′ = x + rviei

where r is randomly sampled from {−1, 1}

• after ns cycles, step size is adjusted according to

vi =


vi
(
1 + ci

ai/ns−0.6
0.4

)
if ai > 0.6ns

vi
(
1 + ci

0.4−ai/ns
0.4

)−1
if ai < 0.4ns

vi otherwise

a: accepted steps in each direction; c : typically 2.

regulates the ratio of
accepted-to-rejected points to about
50%.
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Simulated Annealing

• Temperature reduction occurs every nt step
adjustments, which is every ns · nt cycles

• termination when the temperature sinked
low and no improvement expected or when
no movement more than ϵ in last nϵ
iterations
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Cross-Entropy Method

• Maintains explicit probability distribution over design space often called a proposal
distribution

• Requires choosing a family of parameterized distributions

• At each iteration, a set of design points are conditionally independently sampled from the
proposal distribution; these are evaluated and ranked

• The best-performing subset of samples, called elite samples, are retained

• The proposal distribution parameters are then updated based on the elite samples, and the
next iteration begins

Stochastic Methods 8.21



Cross-Entropy Method

• Cross-entropy is a measure of divergence between two probability distributions p and q
(related to Kullback-Leibler divergence)

• Here we measure cross-entropy in a case where one distribution (the one of optimal solutions)
is unknown.

• A model is created and then its cross-entropy is measured on the elite set to assess how
accurate the model is in predicting this set.

• Let q be the true distribution of the optimal solutions, and p the distribution of solutions as
predicted by the model. Since the true distribution is unknown, cross-entropy cannot be
directly calculated. Instead, an estimate of cross-entropy is:

H(T , p) = −
N∑
i=1

1
N

log2 p(xi )

where N is the size of the elite set, and p(x) is the probability of solution x estimated from
the training set T .
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Cross-Entropy Method
cross-entropy ≡ Maximum likelihood estimation

• A widely used frequentist estimator is maximum likelihood, in which θ is set to the value that
maximizes the likelihood function p(x | θ).

• This corresponds to choosing the value of θ for which the probability of the observed data set
is maximized.

• In the machine learning literature, the negative log of the likelihood function is called an
error function. Because the negative logarithm is a monotonically decreasing function,
maximizing the likelihood is equivalent to minimizing the error.

• Suppose our data set consists of N data points x = {x1, . . . , xN}:

L(x | θ) = p(x | θ) =
N∏
i=1

p(xi | θ) likelihood

E(x | θ) = − logL(x) error function
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Cross-Entropy Method

•

min
θ
E(x | θ) = min

θ
(− logL(x)) = −max

θ
logL(x) maximum log-likelihood

min

(
−

N∑
i=1

log p(xi | θ)

)

• hence minimizing the negative of the log-likelhoood is equivalent to minimizing the entropy
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Multivariate normal distribution
Probability density function

• 1-dimensional:

f (x) =
1√

2πσ2
exp

(
− (x − µ)2

2σ2

)
.

• 2-dimensional:

f (x , y) =
1

2πσXσY

√
1 − ρ2

exp

(
− 1

2 [1 − ρ2]

[(
x − µX

σX

)2

− 2ρ
(
x − µX

σX

)(
y − µY

σY

)
+

(
y − µY

σY

)2
])

where ρ is the correlation between X and Y and where σX > 0 and σY > 0. In this case,

µ =

µX

µY

, Σ =

 σ2
X ρσXσY

ρσXσY σ2
Y

.

• d dimensional:

fX(x1, . . . , xd) =
exp

(
− 1

2 (x − µ)T Σ−1 (x − µ)
)

√
(2π)k |Σ|

with symmetric covariance matrix Σ positive definite.
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(Disadvantage: it is unimodal)



Natural Evolution Strategies

• Similar to cross-entropy method, except instead of parameterizing distribution based on elite
samples, it is optimized using gradient descent

• The aim is to minimize the expectation

Ex∼p(·|θ)[f (x)].

• The distribution parameter gradient is estimated from the set of function evaluations

Input: f ,θ, kMAX ,N = 100, α = 0.01
Output: θ
for k in 1, . . . , kMAX do

Let X = {x1, . . . , xN} be a conditionally independent sample of size N from p(θ);
θk+1 = θk − α 1

N

∑N
i=1 f (xi )∇θ log p(xi ,θk);
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Natural Evolution Strategies
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Natural Evolution Strategies
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Natural Evolution Strategies
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Natural Evolution Strategies
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Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES)

• Same approach as natural evolution strategy and cross entropy method, but the proposal
distribution is a multivariate Gaussian parameterized by a covariance matrix.

• At every iteration, m designs are sampled from the multivariate Gaussian:

x ∼ N (µ, σ2Σ)

parameters: mean vector µ, a covariance matrix Σ, and an additional step-size scalar σ.

• The covariance matrix only increases or decreases in a single direction with every iteration,
whereas σ is adapted to control the overall spread of the distribution.

• Design points are sorted f (x (1)) ≤ f (x (2)) ≤ . . . ≤ f (x (m)).

• A new mean vector µk+1 is formed using a weighted average of the first me-elite sampled
designs:

µ(k + 1)←
me∑
i=1

wix
(i)
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CMA-ES

• the first me elite weights sum to 1, and all the weights approximately sum to 0 and are
ordered largest to smallest

• positive and negative weigths, more aggressive shift

• The step size σ is updated using a cumulative vector p1 that tracks steps over time:
Comparing the length of p1 to its expected length under random selection provides the
mechanism by which σ is increased or decreased.

• covariance matrix is updated using a cumulative vector p2 and adjusted weights;
the update consists of three components: the previous covariance matrix Σk , a rank-one
update, and a rank-µ update
Rank-one updates using the cumulation vector allow for correlations between consecutive steps
to be exploited

• covariance estimated around original mean µk (cross-entropy did it around new mean µk+1)
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Summary

• Stochastic methods employ random numbers during the optimization process

• Simulated annealing uses a temperature that controls random exploration and which is
reduced over time to converge on a local minimum

• The cross-entropy method and evolution strategies maintain proposal distributions from which
they sample in order to inform updates

• Natural evolution strategies uses gradient descent with respect to the log likelihood to update
its proposal distribution

• Covariance matrix adaptation is a robust and sample-efficient optimizer that maintains a
multivariate Gaussian proposal distribution with a full covariance matrix
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Population Methods

• Instead of optimizing a single design point, population methods optimize a collection of
individuals

• A large number of individuals prevents algorithm from being stuck in a local minimum

• Useful information can be shared between individuals

• Stochastic in nature

• Easy to parallelize
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Initialization

• Population methods begin with an initial population

• Common initializations are uniform, normal distribution, and Cauchy distribution

• But also space filling designs (later)
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Genetic Algorithms

• Inspired by biological evolution where the fittest individuals pass their genetic information to
the next generation

• Individuals are interpreted as chromosomes

• The fittest individuals are determined by selection

• The next generation is formed by selecting the fittest individuals and performing crossover
and mutation
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Genetic Algorithms: Chromosomes

• Simplest representation is the binary string chromosome

• Chromosomes are more commonly represented as real-valued chromosomes which are simply
real-valued vectors

• Typically initialized randomly
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Genetic Algorithms: Selection

• Determining which individuals pass their genetic information on to the next generation
choosing chromosomes to use as parents for the next generation

• Truncation selection: truncate the lowest performers

• Tournament selection: selects fittest out of k randomly chosen individuals

• Roulette Wheel selection: individuals are chosen with probability proportional to their fitness
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Genetic Algorithms: Selection

Truncation Selection
Tournament Selection
Roulette Wheel Selection
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Genetic Algorithms: Crossover

• Combines the chromosomes of the parents to form children
• Single-point crossover: swap occurs after single crossover point

• Two-point crossover: two crossover points

• Uniform crossover: each bit has 50% chance of crossover

• real values are linearly interpolated between the parents’ values xa and xb:
x ← (1− λ)xa + λxb
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Genetic Algorithms: Mutation

• Mutation supports exploration of new areas of design space

• Each bit or real-valued element has a probability of being flipped or modified by noise

• The probability of an element mutating is called mutation rate
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Genetic Algorithms

Genetic algorithm with truncation selection, single point crossover, and Gaussian mutation applied
to Michalewicz function
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Differential Evolution

Improves each individual x by recombining other individuals according to a simple formula

1. Choose three random, distinct individuals a, b, and c

2. Construct interim design z = a + w(b − c)

3. Choose a random dimension to optimize in

4. Construct candidate x ′ via binary crossover of x ′ and z

x ′i =

{
zi if i = j or with probability p

xi otherwise

5. Insert better design between x and x ′ into next generation
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Particle Swarm Optimization

• Each individual, or particle, tracks the following

• Current position
• Current velocity
• Best position seen so far by the particle
• Best position seen so far by any particle

• At each iteration, these factors produce force and momentum effects to determine each
particle’s movement

xi ← xi + vi

vi ← wvi + c1r1
(
xbesti − xi

)
+ c2r2

(
xbesti − xi

)
xbest is the best location found so far over all particles; w , c1, and c2 are parameters; and r1
and r2 are random numbers drawn from U(0, 1)
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Particle Swarm Optimization
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Firefly Algorithm

• Inspired by the way fireflies flash their lights to attract mates

• Attractiveness is determined by low function value

• At each iteration, fireflies move toward the most attractive lights

• Random noise is added to increase exploration
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Cuckoo Search

• ...
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...

The Evolutionary Computation Bestiary
http://fcampelo.github.io/EC-Bestiary/
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Hybrid Methods

• Generally, population methods are good at finding the best regions in design space, but do not
perform as well as descent methods near the minimizer

• Hybrid methods try to leverage the strength of both methods

• Two hybrid approaches
Lamarckian learning
Baldwinian learning
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Hybrid Methods

• Lamarckian learning
Performs regular descent method update on each individual

• Baldwinian learning
Uses value of descent method update to augment the objective value of each design point
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Summary

• Population methods use a collection of individuals in the design space to guide progression
toward an optimum

• Genetic algorithms leverage selection, crossover, and mutations to produce better subsequent
generations

• Differential evolution, particle swarm optimization, the firefly algorithm, and cuckoo search
include rules and mechanisms for attracting design points to the best individuals in the
population while maintaining suitable state space exploration

• Population methods can be extended with local search approaches to improve convergence
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Introduction

Large-scale machine learning represents a distinctive setting in which traditional nonlinear
optimization techniques typically falter

• How do optimization problems arise in machine learning applications and what makes them
challenging?

• What have been the most successful optimization methods for large-scale machine learning
and why?

• What recent advances have been made in the design of algorithms and what are open
questions in this research area?
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Two Case Studies

• Logistic regression or support vector machines
convex optimization problems

• deep neural networks
highly nonlinear and nonconvex problems
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• batch gradient method

• stochastic gradient method

Enhancements:

• noise reduction methods that attempt to borrow from the strengths of batch methods, such as
their fast convergence rates and ability to exploit parallelism;

• methods that incorporate approximate second-order derivative information with the goal of
dealing with nonlinearity and ill-conditioning; and

• methods for solving regularized problems designed to avoid overfitting and allow for the use of
high-dimensional models.
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Text Classification via Convex Optimization
Task: determining whether a text document is one that discusses politics.

• set of examples {(x1, y1), . . . , (xn, yn)}, where for each i ∈ {1, . . . , n}
xi represents the features of a text document (e.g., the words it includes)
yi is a label indicating whether the document belongs (yi = 1) or not (yi = −1) to a particular
class.

• h prediction function

• measure performance: count how often the program prediction h(xi ) differs from the correct
prediction yi .

• minimize empirical risk misclassification

Rn(h) =
1
n

n∑
i=1

I[h(xi ) ̸= yi ], where I[A] =

{
1 if A is true,
0 otherwise
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Text Classification via Convex Optimization

Choosing between prediction functions belonging to a given class by comparing them using
cross-validation procedures that involve splitting the examples into three disjoint subsets:

• a training set, optimizing the choice of h by minimizing Rn

• a validation set, generalized performance of each of these remaining candidates is then
estimated using the validation set, the best performing of which is chosen as the selected
function.

• a testing set, only used to estimate the generalized performance of this selected function
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Formalization

• feature vector x ∈ Rd whose components are associated with a prescribed set of vocabulary
words; ∥x∥ = 1

• h(x ;w , τ) = wTx − τ , w ∈ Rd and τ ∈ Rd

• sign(h(x ;w , τ) discountinuous

• continuous approximation through a loss function that measures a cost for predicting h when
the true label is y ;
e.g., one may choose a log-loss function of the form

L(h, y) = log(1 + exp−hy).

min
(w ,τ)∈Rd×R

L(h(xi ;w , τ), yi ) + λ ∥w∥22

solve for various λ and choose on the validation set
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Deep Neural Networks

Deep Neural Networks: represent hypotheses as computation graphs with tunable weights and
compute the gradient of the loss function with respect to those weights in order to fit the training
data.
https://playground.tensorflow.org/
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Perceptual Tasks via Deep Neural Networks
• Prediction function h whose value is computed by applying successive transformations to a

given input vector xi ∈ Rd0 .

• These transformations are made in layers. A canonical fully connected layer performs the
computation

x (j)
i = s(Wjx

(j−1)
i + bj) ∈ Rdj

• where x (0)
i = xi , the matrix Wj ∈ Rdj×dj−1 and vector bj ∈ Rdj contain the jth layer

parameters, and s is a component-wise nonlinear activation function

• s(x) = 1/(1 + exp(−x)) and the hinge function s(x) = max(0, x) (often called a rectified
linear unit (ReLU) in this context)

• x (J)
i leads to the prediction function value h(xi ;w), w = {(W1, b1), . . . , (WJ , bJ)}.

• leads to highliy non-linear and non-convex:

min
w∈Rd

1
N

n∑
i=1

L(h(xi ;w), yi )
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• The gradient with respect to w is made of simple expressions that can be computed by
passing information back through the network from the output units.

• the gradient computations for any feedforward computation graph have the same structure as
the underlying computation graph.

• gradients can be computed by the chain rule and the algorithmic method of automatic
differentiation

• back-propagation in deep learning is simply an application of reverse mode differentiation,
which applies the chain rule “from the outside in”
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Speech recognition

• A contemporary fully connected neural network for speech recognition typically has five to
seven layers. This amounts to tens of millions of parameters to be optimized,

• the training may require up to thousands of hours of speech data (representing hundreds of
millions of training examples) and weeks of computation on a supercomputer
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convolutional neural networks

Convolutional neural networks (CNNs) have proved to be very effective for computer vision and
signal processing tasks

ImageNet Large Scale Visual Recognition Competition (ILSVRC) with five convolutional layers and
three fully connected layers
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Image Recognition

• input x (j−1)
i is intepreted as a multichannel image of 224× 224 pixels.

• convolutional layers, wherein the parameter matrix Wj is a circulant matrix

• product Wjx
(j−1)
i computes the convolution of the image by a trainable filter

• activation functions are piecewise linear functions and can perform more complex operations
that may be interpreted as image rectification, contrast normalization, or subsampling.

• output scores represent the odds that the image belongs to each of 1,000 categories.

• 60 million parameters

• training on a few million labeled images takes a few days on a dual GPU workstation.
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Fundamentals

• Joint probability distribution function P(x , y) that simultaneously represents the distribution
P(x) of inputs as well as the conditional probability P(y | x) of the label y being appropriate
for an input x .

• One should seek to find h that yields a small expected risk of misclassification over all possible
inputs, i.e., an h that minimizes

R(h) = P[h(x) ̸= y ] = E [I[h(x) ̸= y ]],

which is variational since we are optimizing over a set of functions (the h), and is stochastic
since the objective function involves an expectation.

• without explicit knowledge of P the only tractable option is to construct a surrogate problem
that relies solely on the examples (xi , yi )

n
i=1: minimize the empirical risk

Tasks:
• how to choose the parameterized family of prediction functions H and

• how to determine (and find) the particular prediction function h ∈ H that is optimal.
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Choice of Prediction Function

1. H should contain prediction functions that are able to achieve a low empirical risk over the
training set, so as to avoid bias or underfitting the data. (rich family of functions or by using a
priori knowledge to select a well-targeted family)

2. the gap between expected risk and empirical risk, namely, R(h)− Rn(h), should be small over
all h ∈ H. (increases with rich family of functions)

3. H should be effciently solvable in the corresponding optimization problem (the richer the
family of functions and/or the larger training set the more complex the problem becomes)
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Choice of Prediction Function

Uniform laws of large numbers and the Hoeffding inequality gurantee that with probability at least
1− η

sup
h∈H
|R(h)− Rn(h)| ≤ O

(√
1
2n

log

(
2
η

)
+

dH
n

log

(
n

dH

))

- dH Vapnik-Chervonenkis (VC) dimension (measure of capacity of separating points)
- not the same as numer of parameters

• for a fixed dH, uniform convergence is obtained by increasing the number of training points n.

• for a fixed n, the gap can widen for larger dH.

In practice it is typically easier to estimate with cross-validation experiments.
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Structural Risk Minimization

• Rather than choosing a generic family of prediction functions one chooses a structure, i.e., a
collection of nested function families.

• structure can be formed as a collection of subsets of a given family H: given a preference
function Ω, choose various values of a hyperparameter C , according to each of which one
obtains the subset HC

def
= {h ∈ H : ω(h) ≤ C}. (C is, eg, degree of a polynomial model

function, dimension of an inner layer of a DNN)

min Rn(h)

subject to Ω(h) ≤ C

Regularized empirical risk

Rn(h) + λΩ(h)

validation set is then used to estimate the
expected risk corresponding to each C and to
choose one.Machine Learning Applications 10.15



Structural Risk Minimization
Another approach:

• employ an algorithm for minimizing Rn, but terminate the algorithm early, i.e., before an
actual minimizer of Rn is found.
The hyperparameter is played by the training time allowed

• often essential due to computational budget limitations.
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Formal Optimization Problem Statements

• We do not consider a variational optimization problem over H,

• instead we assume that the prediction function h has a fixed form and is parameterized by a
real vector w ∈ Rd

• for some given h(·; ·) : Rdx × Rd → Rdy , we consider the family of prediction functions
H def

= {h(·;w) : w ∈ Rd}

• aim to find h ∈ H that minimizes a given loss function L : Rdx × Rd → Rdy , L(h(x ;w), y)

• Ideally, the expected loss is defined over any input-output pair. Assuming probability
distribution P(x , y) represents the true input-output relationship:

R(w) =

∫
Rdx×Rdy

L(h(x ;w), y)dP(x , y) = E [L(h(x ;w), y)] Expected Risk
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Formal Optimization Problem Statements

• In practice, one seeks the solution of a problem that involves an estimate of the expected risk
R.

• In supervised learning, we have access (either all-at-once or incrementally) to a set of n ∈ N
independently drawn input-output samples {(xi , yi )}ni=1 ⊆ Rdx ×Rdy , with which we define the
empirical risk function Rn : Rd → R by

Rn(w)
def
=

1
n

n∑
i=1

L(h(xi ;w), yi ) Empirical Risk

(note that before we used misclassification error while now L.)
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Simplified Notation

Let ξ be a random seed or the realization of a single (or a set of) sample (x , y).
For a given (w , ξ) let f (w ; ξ) be the composition of the loss function L and the prediction function
h
Then:

R(w) = Eξ[f (w ; ξ)] Expected Risk

Let {ξ[i ]}ni=1 be realizations of ξ corresponding to {(xi , yi )}ni=1 and fi (w)
def
= f (w ; ξ[i ])

Then:

Rn(w)
def
=

1
n

n∑
i=1

fi (w) Empirical Risk
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Stochastic vs Batch Optimization Methods
Reduction to minimizing Rn, with w0 ∈ Rd given (deterministic problem)
Stochastic Approach: Stochastic Gradient (Robbins and Monro, 1951)

wk+1 ← wk − αk∇fik (wk)

ik is chosen randomly from {1, . . . , n}, αk > 0.
• very cheap iteration only on one sample.
• {wk} is a stochastic process determined by the random sequence {ik}.
• the direction might not always be a descent but if it is a descent direction in expectation,

then the sequence {wk} can be guided toward a minimizer of Rn.
Batch Approach: batch gradient, steepest descent, full gradient method:

wk+1 ← wk − αk∇Rn(wk) = wk −
αk

n

n∑
i=1

∇fi (wk)

• more expensive
• can use all deterministic gradient-based optimization methods
• the sum structure opens up to parallelization

Analogues in simulation: stochastic approximation (SA) and sample average approximation (SAA)
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Stochastic Gradient
• In case of redundancy using all the sample data in every iteration is inefficient
• Comparison of the performance of a batch L-BFGS method on number of evaluations of a

sample gradient ∇fik (wk).
• Each set of n consecutive accesses is called an epoch.
• The batch method performs only one step per epoch while SG performs n steps per epoch.

the fast initial improvement achieved by SG, followed by a
drastic slowdown after 1 or 2 epochs, is common in practice

SG more sensitive to αk and starting point

if more epochs, batch may become better
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Rate of Convergence

Let {xk} be a sequence in Rn that converges to x∗.
The convergence is said to be Q-linear (quotient-linear) if there is a constant r ∈ (0, 1) such that

∥xk+1 − x∗∥
∥xk − x∗∥

≤ r for all k sufficiently large

ie, the distance to the solution x∗ decreases at each iteration by at least a constant factor bounded
away from 1 (ie, < 1).

Example:
sequence {1 + (0.5)k} converges Q-linearly to 1, with rate r = 0.5.
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Rate of Convergence
The convergence is said to be Q-superlinear if

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 0

Example: the sequence {1 + k−k} converges superlinearly to 1.

An even more rapid convergence rate:
The convergence is said to be Q-quadratic if

∥xk+1 − x∗∥
∥xk − x∗∥2

≤ M for all k sufficiently large

where M is a positive constant, not necessarily less than 1.
Example: the sequence {1 + (0.5)2

k}.
The values of r and M depend not only on the algorithm but also on the properties of the
particular problem.
Regardless of these values a quadratically convergent sequence will always eventually converge
faster than a linearly convergent sequence.
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Rate of Convergence

Superlinear convergence (quadratic, cubic, quartic, etc) is regarded as fast and desirable, while
sublinear convergence is usually impractical.

• Quasi-Newton methods for unconstrained optimization typically converge Q-superlinearly

• Newton’s method converges Q-quadratically under appropriate assumptions.

• Steepest descent algorithms converge only at a Q-linear rate, and when the problem is
ill-conditioned the convergence constant r in is close to 1.
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Rate of Convergence

A slightly weaker form of convergence:
overall rate of decrease in the error, rather than the decrease over each individual step of the
algorithm.
We say that convergence is R-linear (root-linear) if there is a sequence of nonnegative scalars {vk}
such that

∥xk − x∗∥ ≤ {vk} for all k , and {vk} converges Q-linearly to zero.

Machine Learning Applications 11.7



Theoretical Motivations

• a batch approach can minimize Rn at a fast rate; e.g., if Rn is strongly convex. A batch
gradient method, then there exists a constant ρ ∈ (0, 1) such that, for all k ∈ N, the training
error follows linear convergence

Rn(wk)− R∗
n ≤ O(ρk),

• rate of convergence of a basic stochastic method is slower than for a batch gradient; e.g., if Rn

is strictly convex and each ik is drawn uniformly from {1, . . . , n}, then for all k ∈ N, SG
satisfies the sublinear convergence property

E[Rn(wk)− R∗
n ] = O(1/k).

neither the per-iteration cost nor the right-hand side depends on the sample set size n

• in a stochastic optimization setting, SG yields for the expected risk the same convergence rate
once substituted ∇fik (wk) replaced by ∇f (wk ; ξk) with each ξk drawn independently
according to the distribution P

E[R(wk)− R∗] = O(1/k).

If n≫ k up to iteration k minimizing Rn same as minimizing R
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Beyond SG: Noise Reduction and Second-Order Methods

- on horizontal axis methods that try to improve
rate of convergence
- on vertical axis, methods that try to overcome
non-linearity and ill-conditioning

Mini-batch Approach small subset of samples, call it Sk ⊆ {1, . . . , n}, chosen randomly in each
iteration:

wk+1 ← wk −
αk

|Sk |
∑
i∈S

∇fi (wk)

due to the reduced variance of the stochastic gradient estimates, the method is easier to tune in
terms of choosing the stepsizes {αk}.
dynamic sample size and gradient aggregation methods, both of which aim to improve the rate of
convergence from sublinear to linear
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Outline

17. Analysis of SG
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Theoretical Analysis — Preliminaries
convergence properties and worst-case iteration complexity bounds.

F (w) =

{
Rn(w) = 1

n

∑n
i=1 fi (w) Empirical Risk

R(w) = Eξ[f (w ; ξ)] Expected Risk

sampling uniformly with replacement from training set ⇝ Rn

sampling with P(ξ) with replacement from training set ⇝ R.

Procedure SG(...);
Choose an initial iterate w0;
for k = 0, 1, . . . do

Generate a realization of the random variable xik ;
Compute a stochastic vector g(wk , ξk);
Choose a stepsize αk > 0;
Set the new iterate as wk+1 ← wk − αkg(wk , ξk);
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Theoretical Analysis — Preliminaries

ξk may represent a single sample or a mini-batch
g may represent a stochastic gradient (biased estimator of ∇F (wk) or a stochastic Netwon or
quasi-Newton direction).

g(wk , ξk) =


∇f (wk ; ξk)

1
nk

∑nk
i=1∇f (wk ; ξk,i )

Hk
1
nk

∑nk
i=1∇f (wk ; ξk,i )

Hk a symmetric positive definite scaling matrix
αk fixed stepsize or diminishing stepsizes
wk can have influence on the sample selection (active learning)
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Convergence Analysis – Assumptions

• Assumption 4.1 Lipschitz-continuous objective gradients
• Assumption 4.3 First and second moment limits. The objective function and SG (Algorithm

4.1) satisfy the following:

• objective function to be bounded below by a scalar Finf over the region explored by the algorithm.
• in expectation, the vector −g(wk , ξk) is a direction of sufficient descent for F from wk with a

norm comparable to the norm of the gradient
• the variance of g(wk , ξk) is restricted, but in a relatively minor manner.

Varξk [g(wk , ξk)] ≤ M +MV ∥∇F (wk)∥2
2 , M > 0,MV > 0 for all k ∈ N

• Lemma: Markovian manner in the sense that wk+1 is a random variable that depends only on
the iterate wk , the seed ξk , and the stepsize αk and not on any past iterates.
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Convergence Analysis – Assumptions

• Assumption 4.5 Strong convexity.
The objective function F : Rd → R is strongly convex in that there exists a constant c > 0
such that

F (w̄) ≥ F (w) +∇F (w)T (w̄ −w) +
1
2
c ∥w̄ −w∥22 for all (w̄ ,w) ∈ Rd × Rd

or equivalently if there exists c > 0:

∇2F (w) ⪰ c

(for univariate case: f ′′(w) ≥ c), ie, grows at least quadratically.

Hence, F has a unique minimizer, denoted as w∗ ∈ Rd with F ∗ def
= F (w∗).
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Convergence Analysis – Results

• Theorem 4.6 (Strongly Convex Objective, Fixed Stepsize).

• Theorem 4.7 (Strongly Convex Objective, Diminishing Stepsizes)
SG with diminishing step size converges in expectation.

• role of strong convexity
• role of initial point
• trade-offs of mini batches

• Theorem 4.8 (Nonconvex Objective, Fixed Stepsize)
• While one cannot bound the expected optimality gap as in the convex case, inequality (4.28b)

bounds the average norm of the gradient of the objective function observed on {wk} visited
during the first K iterations.

• classical result for the full gradient method applied to nonconvex functions, namely, that the sum
of squared gradients remains finite, implying that

{∥∇F (wk)∥2} → 0.
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• Theorem 4.9 (Nonconvex Objective, Diminishing Stepsizes)

• for the SG method with diminishing stepsizes, the expected gradient norms cannot stay bounded
away from zero

• the weighted average norm of the squared gradients converges to zero even if the gradients are
noisy, (i.e., if M > 0 in the Variance upper bounding assumption) one can still conclude that the
expected gradient norms cannot asymptotically stay far from zero.
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Computational Complexity Analysis

• consider a big data scenario with an infinite supply of training examples, but a limited
computational time budget. what type of algorithm — e.g., a simple SG or batch gradient
method — would provide the best guarantees in terms of achieving a low expected risk?

• w∗ ∈ argminR(w); wn ∈ argminRn(w), w̃n approximate empirical risk minimizer returned by
a given optimization algorithm at Tmax

• The tradeoffs associated with this scenario can be formalized as choosing the family of
prediction functions H, the number of examples n, and the optimization accuracy
ϵ
def
= E [Rn(w̃n)− Rn(wn)] in order to minimize the total error:

minimize
H,n∈N,ϵ

E [R(w̃n)] =

Eapp(H)︷ ︸︸ ︷
R(w∗)+

Eest(H, n)︷ ︸︸ ︷
E [R(wn)− R(w∗)]+

Eopt(H, n, ϵ)︷ ︸︸ ︷
E [R(w̃n)− R(wn)]

subject to T (n, ϵ) ≤ Tmax
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Computational Complexity Analysis

• SG, with its sublinear rate of convergence, is more efficient for large-scale learning than (full,
batch) gradient-based methods that have a linear rate of convergence.

• reducing the optimization error Eopt(H, n, ϵ) (evaluated with respect to R rather than Rn) one
might need to make up for the additional computing time by: (i) reducing the sample size n,
potentially increasing the estimation error Eest(H, n); or (ii) simplifying the function family H,
potentially increasing the approximation error Eapp(H).
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Computational Complexity Analysis

Keep fixed H carrying out a worst-case analysis on the influence of the sample size n and
optimization tolerance ϵ, which together only influence the estimation and optimization errors.

A stochastic optimization algorithm performs better that batch stochastic in terms of expected error

Large gap between asymptotical behavior and practical realities.
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Remarks

• Fragility of the Asymptotic Performance of SG
ok if objective function it includes a squared L2-norm regularizer (related to constant c) but
regularization parameter should be lowered when the number of samples increases.

• SG good for GPUs but ill-conditioning erodes efficiency of SG

• Distributed computing not working with basic SG because of too frequent updates of w , more
promising with mini-batch.

• Alternatives with Faster Convergence: minimizing empirical risk Rn there is information from
previous gradients.
- gradient aggregation methods
- dynamic sampling approach
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Noise Reduction Methods
• SG as the ideal optimization approach for large-scale applications.

• SG suffers from the adverse effect of noisy gradient estimates.
- when fixed stepsizes are used it prevents SG from converging to the solution
- when a diminishing stepsize sequence {αk} is employed it leads to a slow, sublinear rate of
convergence.

• Remedies:
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Overview

Achieve linear rate of convergence to the optimal value using a fixed stepsize.

• Dynamic sampling methods achieve noise reduction by gradually increasing the mini-batch
size used in the gradient computation, thus employing increasingly more accurate gradient
estimates as the optimization process proceeds.

• Gradient aggregation methods improve the quality of the search directions by storing
gradient estimates corresponding to samples employed in previous iterations, updating one (or
some) of these estimates in each iteration, and defining the search direction as a weighted
average of these estimates.

Rate of convergence remains sublinear but reduces variance of iterates

• iterate averaging methods maintain an average of iterates computed during the
optimization process and employes a more aggressive stepsize sequence–of order O(1/

√
k)

rather than O(1/k).
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Reducing Noise at a Geometric Rate
rate of decrease in noise that allows a stochastic-gradient-type method to converge at a linear rate.

Consequence of Lipschitz assumption with ℓ constant:

Eξk [F (wk+1)]− F (wk) ≤ −αk∇F (wk)
T Eξk [g(wk , ξk)] +

1
2
α2
kℓEξk [∥g(wk , ξk)∥22]

We want to make the left hand side small (sequence of expected optimality gaps).

Theorem 5.1 (Strongly Convex Objective, Noise Reduction)
The SG method with a fixed stepsize ᾱ and previous assumptions plus a variance of the stochastic
vectors that decreases geometrically

Varξk [g(wk , ξk)] ≤ Mζk−1

has a sequence of expected optimality gaps that vanishes at a linear rate:

E[F (wk)− F ∗] ≤ ωρk−1
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Dynamic Sample Size Methods

Can we design efficient optimization methods attaining the critical bound on the variance?

Mini-batch stochastic gradient:

wk+1 ← wk − ᾱg(wk , ξk)

where the stochastic directions are computed for some τ > 1 as

g(wk , ξk)
def
=

1
nk

∑
i∈Sk

∇f (wk ; ξk,i ) with nk
def
= |Sk | = ⌈τ k−1⌉.

the mini-batch size increases geometrically as a function of the iteration counter k

Corollary 5.2. Let {wk} be the iterates generated with unbiased gradient estimates, i.e.,
Eξk,i [∇f (wk ; ξk,i )] = ∇F (wk) for all k ∈ N and i ∈ Sk . Then, the variance condition is satisfied,
and if all other assumptions of Theorem 5.1 hold, then the expected optimality gap vanishes linearly.
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Dynamic Sample Size Methods

Note: we described a method as linearly convergent but the per-iteration cost increases without
bound.

Recall that SG method needs T (n, ϵ) ≤ 1/ϵ evaluations to gurantee E[F (wk)− F ∗] ≤ ϵ

Theorem 5.3 Suppose that the dynamic sampling SG method is run with a stepsize ᾱ satisfying
“some” bounds and some τ . In addition, suppose that all previous Assumptions hold. Then, the
total number of evaluations of a stochastic gradient of the form ∇f (wk ; ξk,i ) required to obtain
E[F (wk)− F ∗] ≤ ϵ is O(ϵ−1).
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Dynamic Sample Size Guidelines

Given the rate of convergence of a batch optimization algorithm on strongly convex functions (i.e.,
linear, superlinear, etc.), what should be the sampling rate so that the overall algorithm is efficient
in the sense that it results in the lowest computational complexity?

• if the optimization method has a sublinear rate of convergence, then there is no sampling rate
that makes the algorithm “efficient”;

• if the optimization algorithm is linearly convergent, then the sampling rate must be geometric
(with restrictions on the constant in the rate) for the algorithm to be “efficient”;

• for superlinearly convergent methods, increasing the sample size at a rate that is slightly faster
than geometric will yield an “efficient” method.
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Design in Practice

• presetting the sampling rate, ie, τ > 1 before running the optimization algorithm, requires
some experimentation. Care must be put in preventing the full sample set from being
employed too soon

• adaptive mechanisms to produce descent directions sufficiently often
• any direction g(wk , ξk) is a descent direction for F at wk if, for some χ ∈ [0, 1), one has

δ(wk , ξk)
def
= ∥g(wk , ξk)−∇F (wk)∥2 ≤ χ ∥g(wk , ξk)∥2

verifying the inequality may be costly because involves the evaluation of ∇F (wk), one can
estimate the left-hand side δ(wk , ξk), and then choose nk so it holds sufficiently often.

• The sample variance obtained by sampling without replacements is bounded above by
χ2 ∥g(wk , ξϵ)∥2

2

• If this condition is not satisfied, then increase the sample size to a size that one might predict
would satisfy such a condition.

• no guarantee that the size nk increases at a geometric rate. Remedy: if the adaptive increasesthe
sampling rate more slowly than a preset geometric sequence, then a growth in the sample size is
imposed.
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Gradient Aggregation

• Rather than compute increasingly more new stochastic gradient information in each iteration,
achieve a lower variance by reusing and/or revising previously computed information

• achieve a linear rate of convergence on strongly convex problems.

• improved rate is achieved primarily by either an increase in computation or an increase in
storage.

• works on finite sums like Rn
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SVRG
Procedure SVRG ; # Methods for Minimizing an Empirical Risk Rn

Choose an initial iterate w1 ∈ Rd , stepsize α > 0 and a positive integer m;
for k = 1, 2, . . . do

Compute the batch gradient ∇Rn(wk);
Initialize w̃1 ← wk ;
for j = 1, . . . ,m do

g̃j ← ∇fij (w̃j)− (∇fij (wk)−∇Rn(wk)) ; # ∇Rn(wk) from batch gradient
w̃j+1 ← w̃j − αg̃j ;

Option (a): Set wk+1 = w̃m+1;
Option (b): Set wk+1 = 1

m

∑m
j=1 w̃j+1;

Option (c): Choose j uniformly from {1, . . . ,m} and set wk+1 = w̃j+1;

• since Eij [∇fij (wk)] = ∇Rn(wk), one can view ∇fij (wk)−∇Rn(wk) as the bias in the gradient
estimate ∇fij (wk).

• sampled gradient ∇fij (w̃j) is corrected based on a perceived bias. Overall, g̃j represents an
unbiased estimator of ∇Rn(w̃j), but with a variance that one can expect to be smaller than as
in simple SG

• Without explicit knowledge of ℓ and c , the length of the inner cycle m and the stepsize α are
typically both chosen by experimentation.
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SAGA
in each iteration, it computes a stochastic vector gk as the average of stochastic gradients
evaluated at previous iterates.

Procedure SAGA ; # Method for Minimizing an Empirical Risk Rn

Choose an initial iterate w1 ∈ Rd and stepsize α > 0;
for i = 1, . . . , n do

Compute ∇fi (w1);
Store ∇fi (w[i ])← ∇fi (w1) ; # w[i ] represents the latest iterate at which ∇fi

for k = 1, 2, . . . do
Choose j uniformly in {1, . . . , n};
Compute ∇fj(wk);
Set gk ← ∇fj(wk)−∇fj(w[j]) +

1
n

∑n
i=1∇fi (w[i ]);

Store ∇fj(w[j])← ∇fj(wk);
Set wk+1 ← wk − αgk ;

As in SVRG, the method employs unbiased gradient estimates, but with variances that are expected
to be less than the stochastic gradients that would be employed in a basic SG routine
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SAGA

• Same per-iteration costs as basic SG

• on strongly convex Rn can achieve a linear rate of convergence but needs knowledge of at least
ℓ.

• More effective initialization instead of evaluating all the gradients {∇fi}ni=1 at the initial point.
For example, one could perform one epoch of simple SG, or one can assimilate iterates
one-by-one and compute gk only using the gradients available up to that point.

• SAGA needs to store n stochastic gradient vectors

• for very large n, gradient aggregation methods are comparable to batch algorithms and
therefore cannot beat SG in this regime
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Iterated Averaging Methods

• for minimizing a continuously differentiable F with unbiased gradient estimates, the idea is to
employ the iteration:

wk+1 ← wk − αg(wk , ξk)

w̃k+1 ←
1

k + 1

k+1∑
j=1

wj

where {w̃k} has no effect on the computation of the SG iterate sequence {wk}

• with stepsizes diminishing at a slow rate of O(1/(ka)) for some a ∈ ( 1
2 , 1) on strongly convex

objectives, yields that E[∥wk − w∗∥22] = O(1/(ka)) while E[∥w̃k − w∗∥22] = O(1/k).

• in certain cases this combination of long steps and averaging yields an optimal constant in
E[∥w̃k − w∗∥22] in the sense that no rescaling of the steps—through multiplication with a
positive definite matrix (second order methods) can improve the asymptotic rate or constant.
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Second Order Methods

• Address the adverse effects of high nonlinearity and ill-conditioning of the objective function
through the use of second-order information.

• improve convergence rates of batch methods or the constants involved in the sublinear
convergence rate of stochastic methods

• First-order methods are not scale invariant. Consider:
F continously differentiable function F : Rd → R

wk+1 ← wk − αk∇F (wk)

linear transformation of the variables {wk} = {Bw̃k}. minw̃ F (Bw̃k)

w̃k+1 ← w̃k − αkB∇F (Bw̃k) =⇒ wk+1 ← wk − αkB
2∇F (wk)

They will perform differently. With α = 1 and B = (∇2F (w1))
−1/2 we get Newton’s method
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• Newton’s method achieves a quadratic rate of convergence if w1 is sufficiently close to a
strong minimizer. On the other hand, stochastic methods like the SG method cannot achieve
a convergence rate that is faster than sublinear, regardless of the choice of B.

• careful use of successive re-scalings based on (approximate) second-order derivatives can be
beneficial between the stochastic and batch regimes.
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Hessian-Free Inexact Newton Methods

• Newton’s method:

wk+1 ← wk + αksk
where sk satisfies ∇2F (wk)sk = −∇F (wk).

• one can solve the linear system inexactly through an iterative approach such as the conjugate
gradient (CG) method.

• By ensuring that the linear solves are accurate enough, such an inexact Newton-CG method
can enjoy a superlinear rate of convergence

• For a smooth objective function F , one can compute ∇2F (w)d at a cost that is a small
multiple of the cost of evaluating ∇F , and without forming the Hessian, which would require
O(d2) storage

• exploit structure of risk measures
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• iterations are more tolerant to noise in the hessian estimate than it is to noise in the gradient
estimate

• employs a smaller, conditionally (given wk) uncorrelated, sample for defining the Hessian than
for the stochastic gradient estimate

• can be combined with a backtracking (Armijo) line search or trust region

• (subsampled) Hessian-vector products can be computed efficiently in ML tasks
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• Stochastic Quasi-Newton Methods:
Like BFGS

• Gauss-Newton Methods
constructs an approximation to the Hessian using only first-order information, and this
approximation is guaranteed to be positive semidefinite, even when the full Hessian itself may
be indefinite.
The price to pay for this convenient representation is that it ignores second-order interactions
between elements of the parameter vector w , which might mean a loss of curvature
information that could be useful for the optimization process.
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Summary

• Ways to cope with the problems in machine learning

• SG might not be the best choice for parallelization

• How about other methods like CMA-ES?
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Constrained Optimization

• Minimizing an objective subject to design point restrictions called constraints

• A variety of techniques transform constrained optimization problems into unconstrained
problems

• New optimization problem statement

minimize
x

f (x)

subject to x ∈ X

• The set X ⊂ R is called the feasible set
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Constrained Optimization
Constraints that bound feasible set can change the optimizer

minimize
x

f (x)

subject to x ∈ [a, b]
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Constraint Types

• Generally, constraints are formulated using two types:

1. Equality constraints: h(x) = 0

2. Inequality constraints: g(x) ≤ 0

• Any optimization problem can be written as

minimize
x

f (x)

subject to gi (x) ≤ 0 for all i in {1, . . . ,m}
hj(x) = 0 for all j in {1, . . . , ℓ}

f and the functions h and g are all smooth, real-valued
functions on a subset of Ren

minimize
x

f (x)

subject to g(x) ≤ 0
h(x) = 0
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Transformations to Remove Constraints

• If necessary, some problems can be reformulated to incorporate constraints into the objective
function

• If x is constrained between a and b

x = ta,b(x̂) =
b + a

2
+

b − a

2

(
2x̂

1 + x̂2

)
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Transformations to Remove Constraints

Example

minimize
x

x sin(x)

subject to 2 ≤ x ≤ 6

minimize
x̂

t2,6(x̂) sin(t2,6(x̂))

minimize
x̂

(
4 + 2

(
2x̂

1 + x̂2

))
sin

(
4 + 2

(
2x̂

1 + x̂2

))
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Transformations to Remove Constraints

Example

minimize
x

f (x)

subject to h(x) = x2
1 + x2

2 + . . .+ x2
n − 1 = 0

• Solve for one of the variables to eliminate constraint:

xn = ±
√

1− x2
1 − x2

2 − . . .− x2
n−1

• Transformed, unconstrained optimization problem:

minimize
x

([
x1, x2, . . . , xn−1,±

√
1− x2

1 − x2
2 − . . .− x2

n−1

])
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Lagrangian Relaxation

• With only equality constraints, critical points (local minima, global minima, or saddle points
optimal) where gradient of f and the gradient of h are aligned

• The method of Lagrangian relaxation is used to optimize a function subject to (equality)
constraints

• Lagrangian multipliers refer to the variables introduced by the method denoted by λ

minimize
x

f (x)

subject to h(x) = 0

1. Form Lagrangian relaxation

L(x , λ) = f (x)− λh(x)

2. Set ∇xL(x , λ) = 0 and ∇λL(x , λ) = 0 to get

∇f (x) = λ∇h(x) h(x) = 0

3. solve for x and λ
onstrained Optimization 13.7



Example

minimize − exp

(
−
(
x1x2 −

3
2

)2

−
(
x2 −

3
2

)2
)

subject to x1 − x2
2 = 0
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Lagrangian Relaxation

Intuitively, the method of Lagrange multipliers finds the point x∗ where the constraint function is
orthogonal to the gradient
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Lagrangian Relaxation with Inequality Constraints

minimize
x

f (x)

subject to g(x) ≤ 0

• If solution lies at the constraint boundary, the constraint is called active, and the Lagrangian
condition holds for a non-negative constant µ:

∇f (x) + µ∇g(x) = 0

• If the solution lies within the boundary, the constraint is called inactive, and the optimal
solution simply lies where

∇f (x) = 0

that is, the Lagrangian condition holds with µ = 0
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Lagrangian Relaxation with Inequality Constraints

minimize
x

f (x)

subject to g(x) ≤ 0

• We create the Lagrangian relaxation such that it
goes to ∞ outside the feasibility set (g(x) ̸≤ 0)):

L∞(x) = f (x) +∞(g(x) > 0)

impractical: discontinuous and nondifferentiable.
• Instead, for µ > 0:

L(x , µ ≥ 0) = f (x) + µg(x)

L∞(x) = maximize
µ≥0

L(x , µ)

for x infeasible, L∞(x) =∞; for x feasible, L∞(x) = f (x)

• The new optimization problem becomes

minimize
x

maximize
µ≥0

L(x , µ)

This is called the primal problem
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Necessary Conditions – KKT Conditions

minimize
x

f (x)

subject to g(x) ≤ 0
h(x) = 0

Any critical point x∗ must satisfy the Karush-Kuhn-Tucker
conditions

1. primal feasibility: g(x∗) ≤ 0 and h(x∗) = 0

2. dual feasibility: penaliztion is towards feasibility µ ≥ 0

3. complementary slackness: either µi or gi (x∗) is zero.

µigi (x∗) = 0, for i = 1, . . . ,m.

4. stationarity: objective function tanget to each active
constraint

∇f (x∗) +
∑
i

µi∇gi (x∗) +
∑
j

λj∇hj(x∗) = 0
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Necessary Conditions – KKT Conditions

Particular cases

• f concave, g convex: then KKT are also sufficient

• Patological cases

In vector form:
∇f (x∗) + µ · ∇g(x∗) + λ · ∇h(x∗) = 0
µ · g(x∗) = 0
g(x∗) ≤ 0, h(x∗) = 0
µ ≥ 0

onstrained Optimization 13.13



Duality

• Generalized Lagrangian Relaxation:

L(x ,µ,λ) = f (x) +
∑
i

µigi (x) +
∑
j

λjhj(x)

• the primal form is

minimize
x

maximize
µ≥0,λ

L(x ,µ.λ)

• Reversing the order of operations leads to the dual form

maximize
µ≥0,λ

minimize
x

L(x ,µ,λ)

• In some cases, the dual problem is easier to solve computationally than the original problem.
In other cases, the dual can be used to obtain easily a lower bound on the optimal value of the
objective for the primal problem. The dual has also been used to design algorithms for solving
the primal problem.
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Duality

Theorem (Max-min inequality)
For any function f : Z ×W → R ,

sup
z∈Z

inf
w∈W

f (z ,w) ≤ inf
w∈W

sup
z∈Z

f (z ,w) .

Proof: see wikipedia
• When f , W , and Z are convex the inequality becomes equality and we have a strong max–min

property (or a saddle-point property).
• For us:

maximize
µ≥0,λ

minimize
x

L(x ,µ,λ) ≤ minimize
x

maximize
µ≥0,λ

L(x ,µ.λ)

• Therefore, the solution to the dual problem d∗ is a lower bound to the primal solution p∗

• The inner part of the dual problem can be used to define the dual function or dual objective

D(µ ≥ 0,λ) = minimize
x

L(x ,µ,λ)
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Duality

• The dual function is concave. Gradient ascent on a concave function always converges to the
global maximum.

• Dual Problem: maxD(λ) subject to λ ≥ 0

• Optimizing the dual problem is easy whenever minimizing the Lagrangian with respect to x is
easy.

• For any µ ≥ 0 and any λ, we have

D(µ ≥ 0,λ) ≤ p∗

• The difference between dual and primal solutions d∗ and p∗ is called the duality gap

• Showing zero-duality gap is a “certificate” of optimality
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Penalty methods

• Penalty methods are a way of reformulating a constrained optimization problem as an
unconstrained problem by penalizing the objective function value when constraints are violated

Example

minimize
x

f (x)

subject to g(x) ≤ 0
h(x) = 0

min
x

f (x) + ρ · pcount(x)

s.t. pcount(x) =
∑
i

(gi (x) > 0) +
∑
j

(hj(x) ̸= 0)

onstrained Optimization 13.17



Penalty Methods

Procedure penalty_method;
Input: f , p, x , kmax ; ρ = 1, γ = 2
Output: x solution
for k in 1, ..., kmax do

x ← minimizex{f (x) + ρ · p(x)};
ρ← ρ · γ;
if p(x) = 0 then

return x ;

return x ;
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Penalty methods

• Count penalty:

pcount(x) =
∑
i

(gi (x) > 0) +
∑
j

(hj(x) ̸= 0)

• Quadratic penalty:

pquadratic(x) =
∑
i

max(gi (x), 0)2 +
∑
j

hj(x)2

• Mixed Penalty:

pmixed(x) = ρ1pcount(x) + ρ2pquadratic(x)
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Augmented Lagrange Method

• Adaptation of penalty method for equality constraints

pLagrangian(x)
def
=

1
2
ρ
∑
i

(hi (x))2 −
∑
i

λihi (x)

Procedure augmented_lagrange_method;
Input: f , h, x , kmax ; ρ = 1, γ = 2)
λ← 0;
for k in 1, . . . , kmax do

p ←
(
x 7→ ρ/2 ·

∑
i (hi (x)

2)− λ · h(x)
)
;

x ← minimizex{f (x) + p(x)};
λ← λ− ρ · h(x);
ρ← ρ · γ;

return x ;

• λ converges towards the Lagrangian multiplier
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Interior Point Methods

• Also called barrier methods, interior point methods ensure that each step is feasible

• This allows premature termination to return a nearly optimal, feasible point

• Barrier functions are implemented similar to penalties but must meet the following conditions:

1. Continuous
2. Non-negative
3. Approach infinity as x approaches boundary
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Interior Point Methods

• Inverse Barrier:

pbarrier (x) = −
∑
i

1
gi (x)

• Log Barrier:

pbarrier (x) = −
∑
i

{
log(−gi (x)) if gi (x) ≥ −1
0 otherwise

New optimization problem:

minimize
x

f (x) +
1
ρ
pbarrier (x)
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Interior Point Methods
Procedure interior_point_method;
Input: f , p, x ; ρ = 1, γ = 2, ϵ = 0.001
∆←∞;
while ∆ > ϵ do

x ′ ← minimizex{f (x) + p(x)/ρ};
∆← ∥x ′ − x∥;
x ← x ′;
ρ← ρ · γ;

return x ;

• Line searches f (x + αd ) are constrained to the interval α = [0, αu], where αu is the step to
the nearest boundary.
In practice, αu is chosen such that x + αd is just inside the boundary to avoid the boundary
singularity.

• Needs an initial feasible solutions. Typically, found by solving:

minimize
x

pquadratic(x)
onstrained Optimization 13.23



Summary

• Constraints are requirements on the design points that a solution must satisfy

• Some constraints can be transformed or substituted into the problem to result in an
unconstrained optimization problem

• Analytical methods using Lagrange multipliers yield the generalized Lagrangian and the
necessary conditions for optimality under constraints

• A constrained optimization problem has a dual problem formulation that is easier to solve and
whose solution is a lower bound of the solution to the original problem

• Penalty methods penalize infeasible solutions and often provide gradient information to the
optimizer to guide infeasible points toward feasibility

• Interior point methods maintain feasibility but use barrier functions to avoid leaving the
feasible set
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14. Linear Constrained Optimization



Problem Formulation

• If an optimization problem has a linear objective and constraints, it is called a
linear programming problem (linear program, LP)

• The general form of a linear program is:

minimize
x

cTx

subject to Ax ≤ b
Dx ≥ e
Fx = g

x , c ∈ Rn,

A ∈ Rm×n,b ∈ Rm

D ∈ Rp×n, e ∈ Rp

F ∈ Rq×n, g ∈ Rq
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Numerical Example

minimize
x1,x2,x3

2x1 − 3x2 + 7x3

subject to 2x1 + 3x2 − 8x3 ≤ 5
4x1 + x2 + 3x3 ≤ 9
x1 − 5x2 − 3x3 ≥ −4
x1 + x2 + 2x3 = 1
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Modelling in Linear Programming

Example
Given a set of items I , each item with a price pi and a value vi , i in I , select the subset of items
that maximizes the total value collected subject to a total expense that does not exceed a given
budget B.

max
∑
i∈I

pixi

s.t.
∑
i∈I

vixi ≤ B

xi ∈ {0, 1}, for all i in I
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Modelling in Linear Programming

Many problems can be converted into linear programs that have the same solution.

Example

minimize L1 = ∥Ax − b∥1

min 1T s
s.t. Ax − b ≤ s
− (Ax − b) ≤ s

Example

minimize L∞ = ∥Ax − b∥∞

min t

s.t. Ax − b ≤ t1
− (Ax − b) ≤ t1

Linear Constrained Optimization 14.4



Problem Formulation

Every general form linear program can be rewritten more compactly in standard form

minimize
x

cTx

subject to Ax ≤ b
x ≥ 0

x , c ∈ Rn,

A ∈ Rm×n,b ∈ Rm
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Example

minimize 5x1 + 4x2

s.t. 2x1 + 3x2 ≤ 5
4x1 + x2 ≤ 11
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Problem Formulation

• Each inequality constraint defines a planar boundary of the feasible set called a half-space

• The set of inequality constraints define the intersection of multiple half-spaces forming a
convex set

• Convexity of the feasible set, along with convexity of the objective function, implies that if we
find a local feasible minimum, it is also a global feasible minimum.

minimize
x

cTx

subject to Ax ≤ b
x ≥ 0
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Half-Spaces and Supporting Hyperplanes
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Problem Formulation

• How many solutions are there?
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Problem Formulation

Linear programs are often solved in equality form

minimize
x

cTx

subject to Ax = b
x ≥ 0

x , c ∈ R2n+m,

A ∈ Rm×2n+m,

b ∈ Rm
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Simplex Algorithm

• Guaranteed to solve any feasible and bounded linear program

• Works on the equality form

• Assumes that rows of A are linearly independent and m ≤ n′ (n′ ≤ 2n +m)

• The feasible set of a linear program forms a polytope (polyhedra bounded by faces of n − 1
dimension)

• The simplex algorithm moves between vertices of the polytope until it finds an optimal vertex

• Points on faces not perpendicular to c can be improved by sliding along the face in the
direction of the projection of −c onto the face.
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Fundamental Theorem of LP

Theorem (Fundamental Theorem of Linear Programming)
Given:

min{cTx | x ∈ P} where P = {x ∈ Rn | Ax ≤ b}

If P is a bounded polyhedron and not empty and x∗ is an optimal solution to the problem, then:

• x∗ is an extreme point (vertex) of P, or

• x∗ lies on a face F ⊂ P of optimal solution

Proof:

• assume x∗ not a vertex of P then ∃ a ball around it still in P. Show that a point in the ball
has better cost

• if x∗ is not a vertex then it is a convex combination of vertices. Show that all points are also
optimal.
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Simplex Algorithm

• Every vertex for a linear program in equality form can be uniquely defined by n −m
components of x that equal zero.

• choosing m design variables and setting the remaining variables to zero effectively removes
n −m columns of A, yielding an m ×m constraint matrix

• the m selected columns of the matrix A are called basis and denoted by B: xi ≥ 0 for i ∈ B

• the n −m columns not in B are called not in basis and are denoted by V : xi = 0 for i ∈ V .

Ax = ABxB = b =⇒ xB = A−1
B b
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Simplex Algorithm

• every vertex has an associated partition (B,V ),

• not every partition corresponds to a vertex.
AB might be not invertible or the point xB might not be ≥ 0.

• identifying partitions that correspond to vertices corresponds to solving an LP problem as well!

Two phases of the algorithm

1. Initialization Phase: finding a feasible starting vertex

2. Optimization Phase: finding the optimal vertex
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Simplex Algorithm: FONCs

Lagrangian function:

L(x ,µ,λ) = cTx − µTx − λT (Ax − b)

Conditions for Optimality for linear programs: KKT are also sufficient:

• feasibility: Ax = b, x ≥ 0

• dual feasibility: µ ≥ 0

• complementary slackness: µ · x = 0

• stationarity: ATλ+ µ = c
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ATλ+ µ = c =⇒

{
AT
Bλ+ µB = cB

AT
Vλ+ µV = cV

• We can choose µB = 0 to satisfy complementry slackness (because xB ≥ 0)

µV = cV −
(
A−1
B AV

)T
cB

• Knowing µV allows us to assess the optimality of the vertices. If µB contains negative
components, then dual feasibility is not satisfied and the vertex is sub-optimal.

• maintain a partition (B,V ), which corresponds to a vertex of the feasible set polytope.

• The partition can be updated by swapping indices between B and V . Such a swap equates to
moving from one vertex along an edge of the feasible set polytope to another vertex.
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Simplex Algorithm: Optimization Phase
Pivoting

• q ∈ V to enter in B

Ax ′ = ABx ′
B + A{q}x

′
q = ABxB = Ax = b

• p ∈ B to leave B becomes zero during the transition.

x ′
B = xB − A−1

B A{q}x
′
q =⇒ (x ′

B)p = 0 = (xB)p −
(
A−1
B A{q}

)
p
x ′q

• leaving index is obtained using the minimum ratio test: compute x ′q for each potential
leaving index p and select the leaving index p that yields the smallest x ′q.

• Choosing an entering index q decreases the objective function value by

cTx ′ = cT
B x ′

B + cqx
′
q = cTx + µqx ′

q

• The objective function decreases only if µq is negative.
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Simplex Algorithm: Optimization Phase

• In order to progress toward optimality, we must choose an index q in V such that µq is
negative. If all components of µV are non-negative, we have found a global optimum.

• Since there can be multiple negative entries in µV , Several possible heuristics to search for
optimal vertex (choose next q)

• Dantzig’s rule: choose most negative entry in µV ; easy to calculate
• Greedy heuristic (largest decrease): maximally reduces objective at each step
• Bland’s rule: chooses first vertex found with negative µV ; useful for preventing or breaking out

of cycles
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Simplex Algorithm: Initialization Phase

• The starting vertex of the optimization phase is found by solving an additional auxiliary linear
program that has a known feasible starting vertex

minimize
x,z

[
0T 1T

]x

z


[
A Z

]x

z

 = b

x

z

 ≥ 0

• The solution is a feasible vertex in the original linear program
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Dual Certificates

• Verification that the solution returned by the algorithm is actually the correct solution

• Recall that the solution to the dual problem, d∗ provides a lower bound to the solution of the
primal problem, p∗

• If d∗ = p∗ then p∗ is guaranteed to be the unique optimal value because the duality gap is zero

• What happens if one of the two is unbounded or infeasible?
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Dual Certificates

Linear programs have a simple dual form:
Primal form (equality)

minimize
x

cTx

subject to Ax = b
x ≥ 0

Dual form

maximize
λ

bTλ

subject to ATλ ≤ c
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Strong Duality Theorem
Due to Von Neumann and Dantzig 1947 and Gale, Kuhn and Tucker 1951.

Theorem (Strong Duality Theorem)
Given:

(P) min{cTx | Ax = b, x ≥ 0}

(D) max{bTλ | ATλ ≥ c}

exactly one of the following occurs:
1. (P) and (D) are both infeasible
2. (P) is unbounded and (D) is infeasible
3. (P) is infeasible and (D) is unbounded
4. (P) has feasible solution, then let an optimal be: x∗ = [x∗1 , . . . , x

∗
n ]

(D) has feasible solution, then let an optimal be: λ∗ = [λ∗
1, . . . , λ

∗
m], then:

p∗ = cTx∗ = bTλ∗ = d∗
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Summary

• Linear programs are problems consisting of a linear objective function and linear constraints

• The simplex algorithm can optimize linear programs globally in an efficient manner

• Dual certificates allow us to verify that a candidate primal-dual solution pair is optimal

• Linear programs can be solved to optimality for problems with millions of variables.
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Sampling Plans

• In all nonlinear non convex optimization, to generate good initial design points

• With computationally costly functions, to create an initial set of design points from where to
build a surrogate models to optimize in place of the original function

• In hyperparameter tuning
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Full Factorial Design

• Factors and levels, terms from the field of
Experimental Design in Statistics

• Uniform and evenly spaced samples across
domain

• Simple, easy to implement, and covers
domain

• Optimization over the points known as
grid search

• Sample count grows exponentially with
dimension: nm

• Can be coarse and miss local features

ai ≤ xi ≤ bi for each component i .
grid with mi samples in the ith dimension
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Random Sampling

• Uses pseudorandom number generator to define samples according to our desired distribution

• If variable bounds are known, a common choice is independent uniform distributions across
domains of possible variable values
[a1, b1]× . . .× [an, bn]

• Ideally, if enough points are sampled and the right distribution is chosen, the design space will
be covered
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Uniform Projection Plans

• A uniform projection plan is a sampling plan over a discrete grid where the distribution over
each dimension is uniform.

Example
In 2D, m ×m sampling grid (as in full factorial), but, instead of taking all m2 samples, we want to
sample only m positions.
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Uniform Projection Plans

Example (Random m-permutations)

p = 4 2 1 3 5

Example (Latin square)

Latin squares are m ×m grids where each row
contains each integer 1 through m and each
column contains each integer 1 through m.

Latin-hypercubes are a generalization to any
number of dimensions (note that the points
remain m) N rooks on a chess board without
threatening each otherSampling Plans 15.5



Stratified Sampling

• Each point is sampled uniformly at random within each grid cell instead of the center

• Cells decided by Full Factorial or Uniform Projection Plans

• Can capture details that regularly-spaced samples might miss
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Space Filling Metrics

• A sampling plan may cover a search space fully, but still leave large areas unexplored

Example (Uniform Projection Plan)

• space-filling metrics quantify this aspect measuring the degree to which a sampling plan
X ⊆ X fills the design space
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Space-Filling Metrics: Discrepancy

• Discrepancy: measure of ability of the sampling plan X to fill a hyper-rectangular design
space

• It is given by hyper-rectangular subset H with the maximum difference between the fraction of
samples in H and the volume of H’s.

d(X ) = supremum
H

∣∣∣∣#(X ∩H)
#X

− λ(H)
∣∣∣∣

λ(H) is the n-dimensional volume of H, ie, the
product of the side lengths of H

We wish to have a plan X with low discrepancy

Often very difficult to compute directly
d for the purple rectangle is > than d for the
blue rectangle
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Space-Filling Metrics: Pairwise Distances

• Method of measuring relative space-filling performance of two m-point sampling plans

• Better spread-out plans will have larger pairwise distances:

1. compute all pairwise distances between all points within each sampling plan

2. sort the pairwise distances of each set in ascending order

3. the plan with the first pairwise distance exceeding the other is considered more
space-filling

• Suggests simple algorithm:
1. produce a set of randomly distributed sampling plans,
2. pick the one with greatest pairwise distances

• Possible also for uniform projection plans, by mutating them with swaps and simulated
annealing.
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Space-Filling Metrics: Morris-Mitchell Criterion

• Alternative to previously suggested algorithm that simplifies the optimization problem

minimize
X

maximize
q∈{1,2,3,10,20,50,100}

Φq(X )

Φq(X ) =

(∑
i

d−q
i

) 1
q

where di is the ith pairwise distance between points in X and q > 0 is a tunable parameter.
Larger values of q give higher penalties to large distances.
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Space-Filling Metrics: Morris-Mitchell Criterion

Uniform projection plans sorted from best to worst according to Φ1
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Space-Filling Subsets

• Often, the set of possible sample points is constrained to be a subset of available choices

• A space-filling metric for a subset S within a finite set X is the maximum distance between a
point in X and the closest point in S , using a norm to measure distance

dmax(X ,S) = maximize
x∈X

minimize
s∈S

∥s − x∥q

• A space-filling subset minimizes this metric

• Often computationally intractable, but heuristics like (repeated) greedy construction and
exchange-search often produce acceptable results
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Space-Filling Subsets
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Quasi-Random Sequences

• Also called low-discrepancy sequences, quasi-random sequences are deterministic
sequences that systematically fill a space such that their integral over the space converges as
fast as possible

• Used for fast convergence in Monte Carlo integration, which approximates an integral by
sampling points in a domain

• Quasi-random sequences are typically constructed for the unit n-dimensional hypercube,
[0, 1]n. Any multidimensional function with bounds on each variable can be transformed into
such a hypercube.
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Quasi-Random Sequences

• Additive Recurrence: Recursively adds irrational numbers

• Halton Sequence: sequence of fractions generated with coprime numbers

• Sobol Sequence: recursive XOR operation with carefully chosen numbers
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Quasi-Random Sequences: Additive Recurrence

• Recursively adds irrational numbers

xk+1 = xk + c (mod 1)

c irrational

c = 1− φ =

√
5− 1
2

≈ 0.618034

φ is golden ratio

• We can construct a space-filling set over n dimensions using an additive recurrence sequence
for each coordinate, each with its own value of c .

• square roots of the primes are known to be irrational, and can thus be used to obtain different
sequences for each coordinate:

c1 =
√

2, c2 =
√

3, c3 =
√

5, c4 =
√

7, c5 =
√

11, . . .
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Quasi-Random Sequences: Halton Sequence
• single-dimensional version, called van der Corput sequences, generates sequences where the

unit interval is divided into powers of base b. For example, b = 2

X =

{
1
2
,
1
4
,
3
4
,
1
8
,
5
8
,
3
8
,
7
8
,

1
16

, . . .

}
whereas b = 5

X =

{
1
5
,
2
5
,
3
5
,
4
5
,

1
25

,
6
25

,
11
25

, . . .

}

• Multi-dimensional space-filling sequences use one van der Corput sequence for each dimension,
each with its own base b. The bases, however, must be coprime in order to be uncorrelated.

• Two integers are coprime if the only positive integer that divides them both is 1, eg, 8 and 9.

• Correlation can be avoided by the leaped Halton method, which takes every pth point, where
p is a prime different from all coordinate bases.
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Quasi-Random Sequences: Sobol Sequence

• Recursive XOR operation with carefully chosen numbers.

• XOR (⊕) returns true if and only if both inputs are different

• For n-dimensional hypercube I n = [0, 1]n, the ith point of the sequence xi for dimension j is
calculated as:

xi,j = xi−1,j ⊕ vk,j

vk,j is the jth dimension of the kth direction number.

• direction numbers vk,j = (0.vk,j,1vk,j,2 . . .)2 where vk,j,m denotes the mth digit after the
binary point.

• Tables of direction numbers with different properties have been proposed.

• Initialization: unit initialisation: ℓth left most bit set to one vk,j,ℓ = 1 for all k and j and all
others to be zero
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Quasi-Random Sequences
space-filling sampling plans in two dimensions. Samples are colored according to the order in which they
are sampled. The uniform projection plan was generated randomly and is not optimized.
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Summary

• Sampling plans are used to cover search spaces with a limited number of points

• Full factorial sampling, which involves sampling at the vertices of a uniformly discretized grid,
requires a number of points exponential in the number of dimensions

• Uniform projection plans, which project uniformly over each dimension, can be efficiently
generated and can be optimized to be space-filling

• Greedy construction and the exchange local search algorithm can be used to find a subset of
points that maximally fill a space

• Quasi-random sequences are deterministic procedures by which space-filling sampling plans
can be generated

Sampling Plans 15.20
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