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AI505 – Optimization
Sheet 01, Spring 2025
Exercises with the symbol + are to be done at home before the class. Exercises with the symbol ∗ willbe tackled in class. The remaining exercises are left for self training after the exercise class. Someexercises are from the text book and the number is reported. They have the solution at the end of thebook.
Exercises on

Exercise 1+ PythonShow that the function f (x) = 8x1 + 12x2 + x21 − 2x22 has only one stationary point, and that it is neithera maximum or minimum, but a saddle point (or inflection point). Plot the contour lines of f in Python(see slides 17, 18 of the tutorial material Part 3).
Exercise 2+
Write the second-order Taylor expansion for the function cos(1/x) around a nonzero point x , and thethird-order Taylor expansion of cos(x) around any point x . Evaluate the second expansion for the specificcase of x = 1.
Exercise 3Suppose that f (x) = xT Qx, where Q is an n × n symmetric positive semidefinite matrix. Show using thedefinition of convex functions, that f (x) is convex on the domain Rn. Hint: It may be convenient to provethe following equivalent inequality: f (y + α(x − y)) − αf (x) − (1 − α)f (y) ≤ 0 for all α ∈ [0, 1] and all
x, y ∈ Rn.
Exercise 4Suppose that f is a convex function. Show that the set of global minimizers of f is a convex set.
Exercise 5∗

Consider the function f (x1, x2) = (x1 + x22 )2. At the point x0 = [1, 0] we consider the search direction
p = [−1, 1]. Show that p is a descent direction and find all minimizers of the problem minα f (x0 + αp).
Exercise 6+
Consider the case of a vector function f : Rn → Rm. The matrix J(x) of first derivatives for this functionis defined as follows:

J(x) = [
∂

∂xi
fj

]
j=1..m
i=1..nwrite the forward-difference calculations needed to compute J(x) at a given point x.

Exercise 7+ (2.1)Adopt the forward difference method to approximate the Hessian of f (x) using its gradient, ∇f (x).
Exercise 8 (2.6)Combine the forward and backward difference methods to obtain a difference method for estimating thesecond-order derivative of a function f at x using three function evaluations.

1



AI505 – Spring 2025 Exercise Sheet
Exercise 9 Python (2.3)Implement in Python a finite difference method and the complex step method and compute the gradientof f (x) = ln x + ex + 1/x for a point x close to zero. What term dominates in the expression?
Exercise 10∗ (2.5)Draw the computational graph for f (x, y) = sin(x + y2). Use the computational graph with forwardaccumulation to compute ∂f

∂y at (x, y) = (1, 1). Label the intermediate values and partial derivatives asthey are propagated through the graph.
Exercise 11∗ PythonImplement dual numbers in Python overriding the operators +,-,*,/. Test the implementation on thefollowing operations:

• ε * ε• 1/(1 + ε)• (1 + 2ε)*(3 − 4ε)
Calculate the forward accumulation of the dual numbers a = 3 + 1ε and b = 2 on the computationalgraph of log(a ∗ b + max(a, 2)).
Exercise 12∗ PythonRead about nanograd and use it to compute by reverse accumulation the gradient of

f (x1, x2, x3) = max {0, x1 + (−x2x3)2
x2x3

}
.

Exercise 13∗ (3.6)Suppose we have a unimodal function defined on the interval [1, 32]. After three function evaluations ofour choice, will we be able to narrow the optimum to an interval of at most length 10? Why or why not?How much more can we reduce with one further evaluation?
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https://github.com/rasmusbergpalm/nanograd/tree/main

