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Exercises with the symbol + are to be done at home before the class. Exercises with the symbol ∗ will
be tackled in class. The remaining exercises are left for self training after the exercise class. Some
exercises are from the text book and the number is reported. They have the solution at the end of the
book.

Exercise 1+ (6.1)
What advantage does second-order information provide about the point of convergence that first-order
information lacks?

Exercise 2+ (6.2)
When would we use Newton’s method instead of the bisection method for the task of finding roots in
one dimension?

Exercise 3∗ (6.4, 6.9)
Apply Newton’s method to f (x) = 1

2xT Hx starting from x0 = [1, 1]. What have you observed? Use H as
follows:

H =



1 0

0 1000





Next, apply gradient descent to the same optimization problem by stepping with the unnormalized
gradient. Do two steps of the algorithm. What have you observed? Finally, apply the conjugate
gradient method. How many steps do you need to converge?
Repeat the exercise for:

f (x) = (x1 + 1)2 + (x2 + 3)2 + 4.
starting at the origin.
Note that H = A, hence we could have derived A also by calculating the Hessian.

Exercise 4+ (6.5)
Compare Newton’s method and the secant method on f (x) = x2 + x4, with x1 = −3 and x0 = −4. Run
each method for 10 iterations. Make two plots:

1. Plot f vs. the iteration for each method.

2. Plot f ′ vs. x . Overlay the progression of each method, drawing lines from (xi, f ′(xi)) to (xi+1, 0) to
(xi+1, f ′(xi+1)) for each transition.

What can we conclude about this comparison?

Exercise 5+ (7.1)
Direct methods are able to use only zero-order information—evaluations of f . How many evaluations
are needed to approximate the derivative and the Hessian of an n-dimensional objective function using
finite difference methods? Why do you think it is important to have zero-order methods?

Exercise 6∗

Implement the extended Rosenbrock function

f (x) =
i=1∑

n/2

[
a(x2i − x2

2i−1)2 + (1 − x2i−1)2
]

1
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where a is a parameter that you can vary (for example, 1 or 100). The minimum is x∗ = [1, 1, . . . , 1], f (x∗) =
0. Consider as starting point [−1, −1, ..., −1].
Solve the minimization problem with scipy.optimize using all methods seen in class that are suitable
for this task. Observe the behavior of the calls for various values of parameters, for example, for the
L-BFGS algorithm the memory parameter m.

Exercise 7
Below you find an implementation of Nelder-Mead algorithm in Python. Analyze it and use it to solve
the Rosenbrock function in 2D. Plot the evolution of the simplex throughout the search (you can get
help from chatGPT to code the plottig facilities).

import numpy as np

import matplotlib.pyplot as plt

def nelder_mead(f, S, eps, max_iterations, alpha=1.0, beta=2.0, gamma=0.5):

delta = float("inf")

y_arr = np.array([f(x) for x in S])

simplex_history = [S.copy()]

iterations=0

while delta > eps and iterations <= max_iterations:

iterations+=1

# Sort by objective values (lowest to highest)

p = np.argsort(y_arr)

S, y_arr = S[p], y_arr[p]

xl, yl = S[0], y_arr[0] # Lowest

xh, yh = S[-1], y_arr[-1] # Highest

xs, ys = S[-2], y_arr[-2] # Second-highest

xm = np.mean(S[:-1], axis=0) # Centroid

# Reflection

xr = xm + alpha * (xm - xh)

yr = f(xr)

if yr < yl:

# Expansion

xe = xm + beta * (xr - xm)

ye = f(xe)

S[-1], y_arr[-1] = (xe, ye) if ye < yr else (xr, yr)

elif yr >= ys:

if yr < yh:

xh, yh = xr, yr

S[-1], y_arr[-1] = xr, yr

# Contraction

xc = xm + gamma * (xh - xm)

yc = f(xc)

if yc > yh:

# Shrink

for i in range(1, len(S)):

S[i] = (S[i] + xl) / 2

y_arr[i] = f(S[i])

else:

S[-1], y_arr[-1] = xc, yc

else:

S[-1], y_arr[-1] = xr, yr

simplex_history.append(S.copy())

delta = np.std(y_arr, ddof=0)
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https://docs.scipy.org/doc/scipy/reference/optimize.html#module-scipy.optimize

