
Department of Mathematics and Computer ScienceUniversity of Southern Denmark, Odense March 9, 2025Marco Chiarandini

AI505 – Optimization
Sheet 03, Spring 2025
Solution:Included.Exercises with the symbol + are to be done at home before the class. Exercises with the symbol ∗ willbe tackled in class. The remaining exercises are left for self training after the exercise class. Someexercises are from the text book and the number is reported. They have the solution at the end of thebook.
Exercise 1+ (6.1)What advantage does second-order information provide about the point of convergence that first-orderinformation lacks?
Solution:Second-order information can guarantee that one is at a local minimum, whereas a gradient of zero isnecessary but insufficient to guarantee local optimality.
Exercise 2+ (6.2)When would we use Newton’s method instead of the bisection method for the task of finding roots inone dimension?
Solution:We would prefer Newtons method if we start sufficiently close to the root and can compute derivativesanalytically. Newton’s method enjoys a better rate of convergence.
Exercise 3∗ (6.4, 6.9)Apply Newton’s method to f (x) = 12xT Hx starting from x0 = [1, 1]. What have you observed? Use H asfollows:

H = 1 00 1000

Next, apply gradient descent to the same optimization problem by stepping with the unnormalizedgradient. Do two steps of the algorithm. What have you observed? Finally, apply the conjugategradient method. How many steps do you need to converge?Repeat the exercise for:
f (x) = (x1 + 1)2 + (x2 + 3)2 + 4.starting at the origin.

Solution:
Newton’s method updates design points (solutions) as follows:

xk+1 = xk − H−1
k ∇f (xk)

and substituting ∇f (xk) = Hxk yields:
xk+1 = xk − xk = 0

Hence
x1 = 0

1

AI505 – Spring 2025 Exercise Sheet
and the search finishes in one step because the following ones would not yield any change.
Gradient Descent update rule is as follows for unnormalized case:

xk+1 = xk − α∇f (xk)
and subtituting ∇f (xk) = Hxk for the specific case and setting α = 1 yields:

xk+1 = xk − Hxk

x1 = 11
 −

1 00 1000
 11

 = 1
−999

x2 = 0

−999
 −

1 00 1000
 0

−999
 = 0998111

x3 = 0998001

 −

1 00 1000
 0998001

 = 0
−997002999

Hence, the gradient descent method diverges. It must be due to the selection of the initial point.
Conjugate gradient

xk+1 = xk + αkdk dk = −rk + βkdk−1
rk = ∇f (xk) = Hxk βk = rT

k Hdk−1
dT

k−1Hdk−1 αk = − rkdk

dT
k Hdk

x1 = x0 + α0d0We choose the first search direction d0 to be the steepest descent direction at the initial point x0.Hence, d0 = −∇f (x0) = −Hx0 and
α0 = − (Hx0)T (−Hx0)(−Hx0)T H(−Hx0) = 100011000001The first iteration then yields:

x1 = x0 − α0d0 = 11
 − 0.010 11000

 = 0.9911

The second iteration:
x2 = x1 + α1d1Setting r1 = Hx1:

β1 = rT1 Hd0
dT0 Hd0 = (Hx1)T H(Hd0)

dT0 Hd0 = ...

d1 = −r1 + β1d0 = ...

α1 = − (Hx1)T d0
dT0 Hd0 = ...

x2 ≈

00

The matrix H has eigenvalues 1 and 100 that are both positive, hence the matrix is positive definite(and hence symmetric). In this case, the conjugate gradient method needs n iterations to find the localoptimum. So x2 should be the optimal solution.
The function:

f (x) = (x1 + 1)2 + (x2 + 3)2 + 4 = x21 + x22 + 2x1 + 6x2 + 9 + 4 + 1
2

AI505 – Spring 2025 Exercise Sheet
Can be obtained by

f (x) = 1/2xT Ax + bT x + cwhere x = [x1, x2]T , b = [2, 6], c = 14 and
A = 2 00 2

The matrix A is positive definite since its eigenvalues are positive. Hence, this is a quadratic functionwhere the Netwon’s method finds the optimal solution in one iteration.

∇f (x) = [2(x1 + 1), 2(x2 + 3)]
H = 2 00 2

x1 = x0 − H−1∇(x0) = 00

 −

2 00 2
−1 26

 = −1
−3

Note that H = A, hence we could have derived A also by calculating the Hessian.
Exercise 4+ (6.5)Compare Newton’s method and the secant method on f (x) = x2 + x4, with x1 = −3 and x0 = −4. Runeach method for 10 iterations. Make two plots:1. Plot f vs. the iteration for each method.2. Plot f ′ vs. x . Overlay the progression of each method, drawing lines from (xi, f ′(xi)) to (xi+1, 0) to(xi+1, f ′(xi+1)) for each transition.What can we conclude about this comparison?
Solution:Note that Newton’s method is used both for finding roots and for finding minima. When used for findingroots it is also known as Newton-Raphson method. Compare:

Method Goal Needs Update ruleNewton-Raphson method Solve f (x) = 0 First derivative f ′(x) xk+1 = xk − f (x)
f ′(x)Newton’s method Minimize f (x) = 0 First and second derivative f ′(x), f ′′(x) xk+1 = xk − f ′(x)
f ′′(x)

Its first derivative is f ′(x) = 2x + 4x3.Its second derivative is f ′(x) = 2 + 12x2.Newton’s method updates the estimate xk using the formula:
xk+1 = xk − f ′(xk)

f ′′(xk)The secant method updates the estimate xn using the formula:
xk+1 = xk − f ′(xk) xk − xk−1

f (xk) − f (xk−1Note that the secant method requires two initial guesses, x0 and x1.
import numpy as np

import matplotlib.pyplot as plt

Define the function and its derivative

def f(x):

return x**2 + x**4

3

https://en.wikipedia.org/wiki/Newton's_method
https://en.wikipedia.org/wiki/Newton's_method_in_optimization

AI505 – Spring 2025 Exercise Sheet
def df(x):

return 2*x + 4*x**3

def ddf(x):

return 2 + 12*x**2

Newton’s method

def newton_method(x0, iterations):

xs = [x0]

for _ in range(iterations):

x0 = x0 - df(x0) / ddf(x0)

xs.append(x0)

return np.array(xs)

Secant method

def secant_method(x0, x1, iterations):

xs = [x0, x1]

for _ in range(iterations - 1):

x_new = xs[-1] - df(xs[-1]) * (xs[-1] - xs[-2]) / (df(xs[-1]) - df(xs[-2]))

xs.append(x_new)

return np.array(xs)

Plot f(x) vs iteration

def plot_function_vs_iteration():

iterations = 10

x_newton = newton_method(-3, iterations)

x_secant = secant_method(-4, -3, iterations)

plt.figure(figsize=(10, 5))

plt.plot(range(iterations + 1), f(x_newton), ’o-’, label="Newton")

plt.plot(range(iterations + 1), f(x_secant), ’x-’, label="Secant")

plt.yscale("log")

plt.xlabel("Iteration")

plt.ylabel("f(x)")

plt.title("f(x) vs Iterations (Log Scale)")

plt.legend()

plt.grid()

#plt.show()

plt.savefig("secant_function.png")

Plot f’(x) vs x with transitions

def plot_derivative_with_transitions():

x_vals = np.linspace(-3, 0, 1000)

plt.figure(figsize=(10, 5))

plt.plot(x_vals, df(x_vals), label="$f’(x)$", color=’grey’)

plt.axhline(0, color=’black’, linestyle=’--’)

Newton’s method

x_newton = newton_method(-3, 10)

for i in range(len(x_newton) - 1):

plt.plot([x_newton[i], x_newton[i+1]], [df(x_newton[i]), 0], ’b-’)

plt.plot([x_newton[i+1], x_newton[i+1]], [0, df(x_newton[i+1])], ’b-’)

Secant method

x_secant = secant_method(-4, -3, 10)

for i in range(1,len(x_secant) - 1):

plt.plot([x_secant[i], x_secant[i+1]], [df(x_secant[i]), 0], ’r-’)

plt.plot([x_secant[i+1], x_secant[i+1]], [0, df(x_secant[i+1])], ’r-’)

plt.xlabel("x")

plt.ylabel("f’(x)")

4

AI505 – Spring 2025 Exercise Sheet

plt.title("Derivative with Method Progression")

plt.legend(["$f’(x)$", "zero line", "Newton", "Secant"])

plt.grid()

#plt.show()

plt.savefig("secant_derivative.png")

Run the plots

plot_function_vs_iteration()

The first plot illustrates how quickly each method converges to a local optimum.The second plot visualizes how each method approaches the root in the context of the derivative’sbehavior.Conclusions from the comparison:
• Convergence Rate: Newton’s method typically exhibits quadratic convergence, meaning the errordecreases exponentially with each iteration when close to the root. The secant method generallyhas a convergence rate of approximately 1.618 (the golden ratio), which is superlinear but slowerthan Newton’s method.
• Initial Guess Sensitivity: Newton’s method requires a good initial guess to ensure convergence,as poor initial guesses can lead to divergence or convergence to an unintended root. The secantmethod, while generally more robust to initial guesses, can still fail to converge if the initialguesses are not chosen appropriately.
• Computational Efficiency: If derivative computation is costly or impractical, the secant method maybe preferred despite its slower convergence rate. However, if the derivative is readily available andcomputationally inexpensive, Newton’s method’s faster convergence can lead to quicker results.

Exercise 5+ (7.1)Direct methods are able to use only zero-order information—evaluations of f . How many evaluationsare needed to approximate the derivative and the Hessian of an n-dimensional objective function usingfinite difference methods? Why do you think it is important to have zero-order methods?
Solution:The derivative has n terms whereas the Hessian has n2 terms. Each derivative term requires twoevaluations when using finite difference methods: f (x) and f (x + hei). Each Hessian term requires 4evaluations when using finite difference methods (in fact less than 4 as some computations can becached):

∂2f
∂xi ∂xj

≈ f (x + he(i) + he(j)) − f (x + he(i)) − f (x + he(j)) + f (x)
h2Thus, to approximate the gradient, we need 2n evaluations, and to approximate the Hessian we need onthe order of 4n2 evaluations. Approximating the Hessian is prohibitively expensive for large n. Directmethods can take comparatively more steps using the same budget of evaluations n2, as direct methodsneed not estimate the derivative or Hessian at each step.

5

AI505 – Spring 2025 Exercise Sheet
Exercise 6∗

Implement the extended Rosenbrock function
f (x) = i=1∑

n/2
[
a(x2i − x22i−1)2 + (1 − x2i−1)2]

where a is a parameter that you can vary (for example, 1 or 100). The minimum is x∗ = [1, 1, . . . , 1], f (x∗) =0. Consider as starting point [−1, −1, ..., −1].Solve the minimization problem with scipy.optimize using all methods seen in class that are suitablefor this task. Observe the behavior of the calls for various values of parameters, for example, for theL-BFGS algorithm the memory parameter m.
Solution:We use the COCO test suite (see article) to carry out this exercise. The advantages of the platform isthat it provides:• a set of problem instances to use, about 1000 to 5000 problems (number of functions × number ofdimensions × number of instances)• a collection of results from the literature• tools to launch and analyze the experimentsThe COCO framework considers functions divided in suites. Functions, fi, within suites are distinguishedby their identifier i = 1, 2, They are further parametrized by the (input) dimension, n, and the instancenumber, j . We can think of j as an index to a continuous parameter vector setting. It parametrizes,among other things, search space translations and rotations. In practice, the integer j identifies a singleinstantiation of these parameters. We then have:

f j
i ≡ f [n, i, j] : Rn → R x 7→ f j

i (x) = f [n, i, j](x).
Varying n or j leads to a variation of the same function i of a given suite. Fixing n and j of function fidefines an optimization problem instance (n, i, j) ≡ (fi, n, j) that can be presented to the solver. Eachproblem receives again an index within the suite, mapping the triple (n, i, j) to a single number.Varying the instance parameter j represents a natural randomization for experiments in order to:• generate repetitions on a single function for deterministic solvers, making deterministic and non-deterministic solvers directly comparable (both are benchmarked with the same experimentalsetup)• average away irrelevant aspects of the function definition,• alleviate the problem of overfitting, and• prevent exploitation of artificial function propertiesWe focus here only on the comparison between different implementations of BFGS. In particular, wecompare a freshly run execution of scipy.optimize.minimize(method=’BFGS’) against the values col-lected in the suite.

import cocoex # experimentation module

import cocopp # post-processing module (not strictly necessary)

import scipy # to define the solver to be benchmarked

input: define suite and solver (see also "input" below where fmin is called)

suite_name = "bbob"

budget_multiplier = 7 # increase to 3, 10, 30, ... x dimension

prepare

6

https://docs.scipy.org/doc/scipy/reference/optimize.html#module-scipy.optimize
https://coco-platform.org/
https://doi.org/10.1080/10556788.2020.1808977

AI505 – Spring 2025 Exercise Sheet
suite = cocoex.Suite(suite_name, "", "") # see https://numbbo.github.io/coco-doc/C/#suite-

parameters

suite = cocoex.Suite(suite_name, "instances: 1-5", "dimensions: 2,3,5,10,20")

output_folder = ’{}_of_{}_{}D_on_{}’.format(

"bfgs", scipy.optimize.minimize.__module__ or ’’, int(budget_multiplier+0.499),

suite_name)

observer = cocoex.Observer(suite_name, "result_folder: " + output_folder)

repeater = cocoex.ExperimentRepeater(budget_multiplier) #, min_successes=4) # x dimension

minimal_print = cocoex.utilities.MiniPrint()

go

while not repeater.done(): # while budget is left and successes are few

for problem in suite: # loop takes 2-3 minutes x budget_multiplier

if repeater.done(problem):

continue

problem.observe_with(observer) # generate data for cocopp

problem(problem.dimension * [0]) # for better comparability

input: the next three lines need to be adapted to the specific fmin

xopt = fmin(problem, repeater.initial_solution_proposal(problem), disp=False)

could depend on budget_multiplier

xopt = scipy.optimize.minimize(problem, repeater.initial_solution_proposal(problem)

, method="BFGS", options={"disp":False}) # could depend on budget_multiplier

problem(xopt.x) # make sure the returned solution is evaluated

repeater.track(problem) # track evaluations and final_target_hit

minimal_print(problem) # show progress

post-process data

dsl = cocopp.main(observer.result_folder + ’ bfgs-scipy*’) # re-run folders look like

"...-001" etc

An aggregate comparison is carried out by means of empirical distribution functions (ECDF), to beexplained in class. The analysis is visualized in Figure 1. The plots show that the three algorithmspeform very close to each others as expected. However, for the smaller dimensions it seems that thefreshly tested version has some troubles. Why?
Exercise 7Below you find an implementation of Nelder-Mead algorithm in Python. Analyze it and use it to solvethe Rosenbrock function in 2D. Plot the evolution of the simplex throughout the search (you can gethelp from chatGPT to code the plottig facilities).

import numpy as np

import matplotlib.pyplot as plt

def nelder_mead(f, S, eps, max_iterations, alpha=1.0, beta=2.0, gamma=0.5):

delta = float("inf")

y_arr = np.array([f(x) for x in S])

simplex_history = [S.copy()]

iterations=0

while delta > eps and iterations <= max_iterations:

iterations+=1

Sort by objective values (lowest to highest)

p = np.argsort(y_arr)

S, y_arr = S[p], y_arr[p]

xl, yl = S[0], y_arr[0] # Lowest

xh, yh = S[-1], y_arr[-1] # Highest

xs, ys = S[-2], y_arr[-2] # Second-highest

xm = np.mean(S[:-1], axis=0) # Centroid

Reflection

xr = xm + alpha * (xm - xh)

7

AI505 – Spring 2025 Exercise Sheet

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

bfgs of scipy

BFGS-scipy-20

BFGS-scipy Ba

best 2009bbob f1-f24, 2-D
51 targets: 100..1e-08
15 instances

v2.7.1

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

bfgs of s

BFGS-scip

best 2009bbob f1-f24, 3-D
51 targets: 100..1e-08
15 instances

v2.7.1

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

bfgs of scipy

BFGS-scipy-20

BFGS-scipy Ba

best 2009bbob f1-f24, 5-D
51 targets: 100..1e-08
15 instances

v2.7.1

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

bfgs of s

BFGS-scip

best 2009bbob f1-f24, 10-D
51 targets: 100..1e-08
15 instances

v2.7.1

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

bfgs of scipy

BFGS-scipy Ba

BFGS-scipy-20

best 2009bbob f1-f24, 20-D
51 targets: 100..1e-08
15 instances

v2.7.1

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

bfgs of s

BFGS-scip

best 2009bbob f1-f24, 40-D
51 targets: 100..1e-08
15 instances

v2.7.1

Figure 1: Comparison of BFGS implementaiton in COCO by means of aggregated ECDFs.

8

AI505 – Spring 2025 Exercise Sheet
yr = f(xr)

if yr < yl:

Expansion

xe = xm + beta * (xr - xm)

ye = f(xe)

S[-1], y_arr[-1] = (xe, ye) if ye < yr else (xr, yr)

elif yr >= ys:

if yr < yh:

xh, yh = xr, yr

S[-1], y_arr[-1] = xr, yr

Contraction

xc = xm + gamma * (xh - xm)

yc = f(xc)

if yc > yh:

Shrink

for i in range(1, len(S)):

S[i] = (S[i] + xl) / 2

y_arr[i] = f(S[i])

else:

S[-1], y_arr[-1] = xc, yc

else:

S[-1], y_arr[-1] = xr, yr

simplex_history.append(S.copy())

delta = np.std(y_arr, ddof=0)

Solution:

if __name__ == "__main__":

Test function: Rosenbrock function

def rosenbrock(x):

return (1 - x[0])**2 + 100 * (x[1] - x[0]**2)**2

Initial simplex

S = np.array([[1.3, 0.7], [1.5, 0.9], [1.2, 1.2]])

epsilon = 1e-6

result, simplex_history = nelder_mead(rosenbrock, S, epsilon, 100)

print("Minimum found at:", result)

print("Function value at minimum:", rosenbrock(result))

Plotting

x = np.linspace(-2, 2, 400)

y = np.linspace(-1, 2, 400)

X, Y = np.meshgrid(x, y)

Z = (1 - X)**2 + 100 * (Y - X**2)**2

plt.figure(figsize=(10, 8))

plt.contour(X, Y, Z, levels=np.logspace(-1, 3, 50), cmap="viridis")

for simplex in simplex_history:

plt.plotzip(*np.vstack([simplex, simplex[0]])), "r-",

alpha=0.6)print(simplex.ravel())plt.plot(result[0], result[1], "ro",

label="Minimum")plt.title("Nelder-Mead Simplex Evolution on Rosenbrock

Function")plt.xlabel("x")plt.ylabel("y")plt.legend()plt.grid(True)plt.savefig("nelder.png")

Minimum found at: [1. 1.]

Function value at minimum: 1.232595164407831e-30

[1.3 0.7 1.5 0.9 1.2 1.2]

9

AI505 – Spring 2025 Exercise Sheet

[1.2 1.2 1.3 0.7 1. 1.]

[1. 1. 1.2 1.2 1. 1.3]

[1. 1. 1.2 1.2 1.05 1.2]

[1. 1. 1.05 1.2 1.1125 1.15]

[1. 1. 1.1125 1.15 1.053125 1.1375]

[1. 1. 1.053125 1.1375 1.06953125 1.109375]

[1. 1. 1.053125 1.1375 1.04804687 1.0890625]

[1. 1. 1.04804687 1.0890625 1.03857422 1.09101562]

[1. 1. 1.04804687 1.0890625 1.03129883 1.06777344]

[1. 1. 1.03129883 1.06777344 1.03184814 1.06147461]

[1. 1. 1.03184814 1.06147461 1.02361145 1.04925537]

[1. 1. 1.02361145 1.04925537 1.00178452 1.00620422]

[1. 1. 1.00178452 1.00620422 0.97817307 0.95694885]

[1. 1. 0.97817307 0.95694885 0.99543552 0.99233932]

[1. 1. 0.99543552 0.99233932 1.00749011 1.01578007]

[1. 1. 1.00749011 1.01578007 1.00789982 1.01566539]

[1. 1. 1.00789982 1.01566539 1.00217981 1.00385901]

[1. 1. 1.00217981 1.00385901 0.99768495 0.99506156]

[1. 1. 0.99768495 0.99506156 0.99717381 0.99436667]

[1. 1. 0.99717381 0.99436667 0.99903788 0.99824422]

[1. 1. 0.99903788 0.99824422 1.00069151 1.00149983]

[1. 1. 1.00069151 1.00149983 1.00099969 1.00200276]

The output above shows the coordinates of the points of the simplex throughout the iterations. Thematrix 3 × 2 simplex has been flattened. There are 3 points in the simplex, each with two coordinates.Let’s compare this implementation of Nelder-Mead simplex algorithm with the one from the scipy libraryusing the test platform COCO. Below you find the script used and in Figure 2 the results.
10

AI505 – Spring 2025 Exercise Sheet
The results seem to indicate that the version reported here performs better than the one in scipy. Itremains to be understood whether the reason for the flattening of the cure is the computational budget.

import cocoex # experimentation module

import cocopp # post-processing module (not strictly necessary)

import scipy # to define the solver to be benchmarked

import numpy as np

from nelder import nelder_mead

def nelder_mead_my(func, x0, max_iterations, epsilon = 1e-6):

N = x0.shape[0]

S0 = np.zeros((N + 1, N))

sign = -1

for i in range(N):

sign = np.zeros_like(x0)

sign[i]=0.2 if i % 2 == 0 else -0.2

S0[i,]=x0 + sign

sign = np.zeros_like(x0)

for j in range(N):

sign[j]=0.2 if j % 2 == 0 else -0.2

S0[N,]=x0 + sign

x, simplex_history = nelder_mead(func, S0, eps=epsilon, max_iterations=max_iterations)

return x

def nelder_mead_scipy(func, x0, maxfev):

res = scipy.optimize.minimize(func, x0, method="Nelder-Mead", options={"disp":False, "

maxfev":maxfev})

return res.x

input: define suite and solver (see also "input" below where fmin is called)

suite_name = "bbob"

List of algorithms to test

algorithms = {

"my_nelder_mead": nelder_mead_my,

"scipy_nelder_mead": nelder_mead_scipy,

}

budget_multiplier = 10 # increase to 3, 10, 30, ... x dimension

prepare

suite = cocoex.Suite(suite_name, "", "") # see https://numbbo.github.io/coco-doc/C/#suite-

parameters

#suite = cocoex.Suite(suite_name, "instances: 1-5", "dimensions: 2,3,5,10,20")

minimal_print = cocoex.utilities.MiniPrint()

result_folders = []

go

for algo_name, algo in algorithms.items():

output_folder = f’{algo_name}_{int(budget_multiplier+0.499)}D_on_{suite_name}’

observer = cocoex.Observer(suite_name, "result_folder: " + output_folder)

repeater = cocoex.ExperimentRepeater(budget_multiplier) #, min_successes=4) # x

dimension

while not repeater.done(): # while budget is left and successes are few

for problem in suite: # loop takes 2-3 minutes x budget_multiplier

#print(f"Running {algo_name} on problem {problem.id}")

if repeater.done(problem):

continue

problem.observe_with(observer) # generate data for cocopp

problem(problem.dimension * [0]) # for better comparability

11

AI505 – Spring 2025 Exercise Sheet

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

scipy nel

my nelder

BFGS ros

best 2009bbob f1-f24, 2-D
51 targets: 100..1e-08
15 instances

v2.7.1

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

scipy nel

my nelder

BFGS ros

best 2009bbob f1-f24, 3-D
51 targets: 100..1e-08
15 instances

v2.7.1

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

scipy nel

my nelder

BFGS ros

best 2009bbob f1-f24, 5-D
51 targets: 100..1e-08
15 instances

v2.7.1

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

scipy nel

my nelder

BFGS ros

best 2009bbob f1-f24, 10-D
51 targets: 100..1e-08
15 instances

v2.7.1

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

scipy nel

my nelder

BFGS ros

best 2009bbob f1-f24, 20-D
51 targets: 100..1e-08
15 instances

v2.7.1

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

scipy nel

my nelder

BFGS ros

best 2009bbob f1-f24, 40-D
51 targets: 100..1e-08
15 instances

v2.7.1

Figure 2: Comparison of different implementations of Nelder-Mead.
input: the next three lines need to be adapted to the specific fmin

xopt = fmin(problem, repeater.initial_solution_proposal(problem), disp=False)

could depend on budget_multiplier

xopt = algo(problem, repeater.initial_solution_proposal(problem), problem.

dimension * budget_multiplier) # could depend on budget_multiplier

problem(xopt) # make sure the returned solution is evaluated

repeater.track(problem) # track evaluations and final_target_hit

minimal_print(problem) # show progress

result_folders += [observer.result_folder]

post-process data

dsl = cocopp.main(" ".join(result_folders) + ’ bfgs!’) # re-run folders look like

"...-001" etc

12

