
Department of Mathematics and Computer ScienceUniversity of Southern Denmark, Odense March 27, 2025Marco Chiarandini

AI505 – Optimization
Sheet 05, Spring 2025
Solution:Included.Exercises with the symbol + are to be done at home before the class. Exercises with the symbol ∗ willbe tackled in class. The remaining exercises are left for self training after the exercise class. Someexercises are from the text book and the number is reported. They have the solution at the end of thebook.
Exercise 1+
Learn the basics of PyTorch https://pytorch.org/tutorials/beginner/basics/intro.html.
Exercise 2+
Write the update rule for stochastic gradient with mini-batches of size m on a generical machine learningmodel y = h(x) and with loss function L.Write the update formula with momentum in the case of mini-batch of size m.
Solution:

xk+1 = xk − αk
1
m

m∑
i=1 ∇θL(xi, yi, θ)

with momentum:
vk+1 = βvk − α 1

m

m∑
i=1 ∇θL(xi, yi, θ)

xk+1 = xk + vk+1
Exercise 3∗

In a regression task we assume h(x; w) = w0 + w1x1 + w2x2 + . . . + wdxd. For the estimation of theparameters w ∈ Rd+1 using the examples {(x1, y1), . . . , (xn, yn)} we can use the least squares lossfunction: min Rn(w) = n∑
i=1 (h(xi; w), yi) = min ∥∥y − Xw

∥∥22
where

X =


1 x11 x21 . . . xd11 x11 x21 . . . xd1... . . .1 x1n x2n . . . xdn


This problem admits a closed form solution by means of the normal equations w = (XT X )−1XT y. Youfind the derivation of this result in these slides from DM579/AI511.The L2 Regularized risk is

min
w

Rn(w) + λ ∥w∥22 = n∑
i=1 L (h(xi; w), yi) + λ

d∑
j=0 w2

j = ∥∥y − Xw
∥∥22 + λ ∥w∥22

1

https://pytorch.org/tutorials/beginner/basics/intro.html
https://dm587.github.io/assets/dm587-linreg.pdf


AI505 – Spring 2025 Exercise Sheet
admits also a closed-form solution: w = (XT X + λI)−1(XT y).Provide a computational analysis of the cost of computing the estimates of w by means of these closed-form solutions and compare these costs with the cost of carrying out the gradient descent. When isthegradient descent faster?
Solution:The calculation of the solution via normal equations costs O(nd2 + d3), matrix by matrix multiplicationplus an inverse calculation. This is fine for d = 5000, but may be too slow for d = 1, 000, 000.For the gradient descent we need first to calculate the gradient of Rn. In matrix form:

∇Rn(w) = ∇w(y − Xw)T (y − Xw) + λIw2
wk+1 = wk − αk∇Rn(w) = wk − αk (XT (Xwk − y) + λwk )which costs O(ndt), t as total number of iterations, and k as iteration number. Gradient descent isfaster if t is not too big: If we only need t < max{d, d2/n} iterations.

Iteration Complexity How many iterations does gradient descent need?We are interested in reaching ∥∥∇f (wk )∥∥2 = 0 or more practical ∥∥∇f (wk )∥∥2 ≤ ε.Give an ε how many iterations does it take for this to happen?
Theorem 1 If we run for t iterations, we’ll find at least one k with

∥∥∇f (wk )∥∥2 = O(1/t).
Theorem 2 For functions that are bounded below and have a Lipschitz-continuous gradient, Gradient
Descent requires t = O(1/ε) iterations to achieve

∥∥∇f (wk )∥∥2 ≤ ε. (note: dimension independent)

So if computing gradient costs O(nd), total cost of gradient descent is O(nd/ε), that is, O(nd) periteration for O(1/ε) iterations.There is a dimension d beyond which gradient descent is faster than normal equations. In practicegradient descent converges much faster.
Theorem 3 For convex functions we need O(1/ε) iterations to get ε-close to global optimum. We can
get to O(1/

√
ε).

Is O(1/ε) a good iteration complexity?Let’s try to gain an idea about it. Recall that ε specifies the desired accuracy. The smaller the better.
ε 1/ε log(1/ε) t = O(1/ε)10−1 10 1 1010−2 100 2 10010−3 1000 3 100010−4 10000 4 10000We can think of log(1/ε) as the desired “number of digits of accuracy”. We want iteration complexity togrow slowly with 1/ε and with the number of digits of accuracy. Instead, it grows exponentially withrespect to this latter.

For t total number of iterations:
iterations for error to go below ε rate of convergenceerror diminishing at rate O(1/t) needs O(1/ε) iterations sublinear arteerror diminishing at rate O(ρt) needs O(log(1/ε)) iterations linear rateerror diminishing at rate O(ρ2t ) needs O(log log(1/ε)) iterations superlinear rate

2



AI505 – Spring 2025 Exercise Sheet
Exercise 4Consider now multiple logistic regression. In this case the hypothesis is that the probability of y = 1given x is given by

h(x; w) = p(y = 1 | x; w) = 11 + exp (−(w0 + w1x1 + . . . + wdxd)) = exp (w0 + w1x1 + . . . + wdxd)1 + exp (w0 + w1x1 + . . . + wdxd)The loss-likelihood function can be formulated as follows:
L = ∏

i:yi=1 pi(xi) ∏
i:yi=0(1 − pi(xi))

Rn(w) = log L(w) =
= log  ∏

i:yi=1
exp (w0 + w1x1 + . . . + wdxd)1 + exp (w0 + w1x1 + . . . + wdxd) ∏

i:yi=0
11 + exp (w0 + w1x1 + . . . + wdxd)


= n∑

i=1 yi loge(p(xi)) + n∑
i=1 (1 − yi) loge(1 − p(xi)) =

= n∑
i=1 yi(wT xi − log (1 + exp (wT xi)) + n∑

i=1 (1 − yi)(− log (1 + exp (wT xi))
= n∑

i=1 yi(wT xi) −
n∑

i=1 log (1 + exp (wT xi))
The minimization of the empirical risk: min Rn(x; w) cannot be reformulated as a linear system in thiscase. Setting ∇Rn(w) = 0 gives a system of transcendental equations. But this objective function isconvex and differentiable.With some tedious manipulations, the gradient for logistic regression is

∇Rn(w) = XT s

where vector s has si = −yih(−yiwT xi) and h is the sigmoid function and
∇2Rn(w) = XT DX

where D is a diagonal matrix with
dii = h(yiwT xi)h(−yiwT xi)

It can be shown that XT DX is positive semidefinite and therefore logistic regression is convex (it becomesstrictly convex if we add L2-regularization making the solution unique).Hence, gradient descent converges to a global optimum. Alternately, another common approach isNewton’s method. Requires computing Hessian ∇2Rn(wi).What is the computational cost of gradient descent and of the Newton method for the logistic regressiondescribed?
Solution:Gradient descent costs O(ndt).Newton costs O(nd2 + d3) per iteration to compute and invert ∇2Rn(wk ). Newton typically requiressubstantially fewer iterations (1 if function is strongly convex). But for datasets with very large d,gradient descent might be faster. If t < max{d, d2/n} then we should use the “slow” algorithm with fastiterations.
Exercise 5Implement the logistic regression in pytorch using the MNIST dataset of handwritten number images.Use a model with 10 output nodes each implementing a sigmoid activation function.

3



AI505 – Spring 2025 Exercise Sheet
Experiment with different versions of stochastic gradient: basic, mini-batch and batch. Compare stochas-tic gradient with other algorithms like Adam. You find a starting implementation in the appendix of thisdocument.
Exercise 6∗

Recall that a way to measure rate of convergence is by the limit of the ratio of successive errors,
lim

k→∞

f (wk+1) − f (w∗)
f (wk ) − f (w∗) = r

Different r values of give us different rates of convergence:• If r = 1 we call it a sublinear rate.• If r ∈ (0, 1) we call it a linear rate.• If r = 0 we call it a superlinear rate.Consider the following sequences, which represent the error ek = ∥∥F (wk ) − F ∗∥∥ at iteration k of anoptimization algorithm:
1. ek = 0.5k

2. ek = 1
k+13. ek = 0.1k

4. ek = 1(k+1)25. ek = 122k

Tasks:
a) Classify the convergence rate of each sequence as linear, sublinear, superlinear, or quadratic.b) Provide a justification for each classification by computing the ratio ek+1/ek or by using the definitionof order of convergence.
Solution:We analyze each sequence by computing the ratio ek+1/ek and checking how it behaves as k → ∞.

• ek = 0.5k

ek+1
ek

= 0.5k+10.5 = 0.5
Since this ratio is a constant r = 0.5 with 0 < r < 1, the convergence is linear.• ek = 1

k+1
ek+1
ek

= 1
k + 2 / 1

k + 1 = k + 1
k + 2Taking the limit: lim

k→∞

k + 1
k + 2 = 1

Since the ratio tends to 1, the convergence is sublinear (very slow).• ek = 0.1k

ek+1
ek

= 0.1k+10.1k = 0.1
Since this ratio is a constant r = 0.1 with 0 < r < 1, the convergence is linear, but it is fasterthan Sequence 1 (since r = 0.1 is smaller than r = 0.5 and closer to 0 which is the superlinearrate).

4



AI505 – Spring 2025 Exercise Sheet
• ek = 1(k+1)2

ek+1
ek

= 1(k + 2)2 / 1(k + 1)2 = (k + 1)2(k + 2)2Taking the limit: lim
k→∞

(k + 1)2(k + 2)2 = (
k + 1
k + 2

)2 = 1
This suggests linear convergence.• ek = 122k

lim
k→∞

ek+1
ek

= 22k22k+1 = 22k22·2k = 22k22 · 22k = 122This suggests linear convergence. To verify if it is faster than linear, we check:
lim

k→∞

ek+1
e2

k
=

(22k
)2

22k+1 =
(22k

)2
22·2k =

(22k
)2

22 · 22k = 22k22 = ∞

Since this limit is not finite, the sequence is superlinear but not quadratic.
Exercise 7∗

Consider applying gradient descent to the one-dimensional quadratic function
f (x) = 12x2

with the update rule:
xk+1 = xk − α∇f (xk ).where ∇f (x) = x .Tasks:

a) Derive the update formula for xk .b) Show that the error ek = ∥∥xk
∥∥ follows an exponential decay when 0 < α < 2.c) Compute ek+1

ek
and determine the rate of convergence for different values of α .d) Set up a Python experiment where gradient descent is applied with different step sizes (α) and verifythe theoretical convergence rate numerically.Hint: Try α = 0.1, 0.5, 1, 1.5 and observe how quickly the errors decrease.

Solution:The update rule is
xk+1 = xk − αxk = (1 − α)xkExpanding the recursion:

x1 = (1 − α)x0
x2 = (1 − α)x1 = (1 − α)2x0
x3 = (1 − α)x2 = (1 − α)3x0.

By induction, the general formula is:
xk = (1 − α)kx0.The error is defined as ek = ∥∥xk

∥∥.Since xk = (1 − α)kx0, we have:
ek = |(1 − α)k ||x0|

5



AI505 – Spring 2025 Exercise Sheet
Since 0 < α < 2, the term |1 − α| satisfies:

|1 − α| < 1
Thus, as k → ∞, we see exponential decay:

ek = |1 − α|ke0.

c) This result together with the analysis in the previous exercise confirms that gradient descent convergeslinearly in this simple quadratic case.d)
import numpy as np

import matplotlib.pyplot as plt

# Function and gradient

def f(x):

return 0.5 * x**2

def grad_f(x):

return x # Since f(x) = (1/2) x^2, its gradient is simply x

# Gradient Descent Function

def gradient_descent(x0, alpha, num_iters):

errors = []

x_k = x0

for _ in range(num_iters):

errors.append(abs(x_k)) # Store absolute error |x_k|

x_k = x_k - alpha * grad_f(x_k) # Gradient descent update

return errors

# Initial point

x0 = 10 # Starting point

# Step sizes to test

alphas = [0.1, 0.5, 1, 1.5]

# Number of iterations

num_iters = 50

# Run gradient descent for different values of alpha

plt.figure(figsize=(8, 5))

for alpha in alphas:

errors = gradient_descent(x0, alpha, num_iters)

plt.semilogy(errors, label=f"\alpha = {alpha}")

# Plot settings

plt.xlabel("Iteration k")

plt.ylabel("Error |x_k| (log scale)")

plt.title("Gradient Descent Convergence for Different alpha")

plt.legend()

plt.grid()

#plt.show()

plt.savefig("convergence.png")

Explanation:• We initialize x0 = 10 (arbitrary nonzero starting point).• For each α , we perform gradient descent for 50 iterations.• We plot ek on a semilog scale, where exponential decay appears as a straight line.
6



AI505 – Spring 2025 Exercise Sheet

• Expected behavior:- If 0 < α < 2, the error decreases exponentially.Higher α (closer to 2) should converge faster but risks instability if α ≥ 2.Expected Observations:• For small α (e.g., 0.1): Convergence is slow.• For moderate α (e.g., 0.5, 1): Faster convergence.• For large α (e.g., 1.5): Convergence is still fast but close to instability.• If we set α = 2, we would see oscillations instead of convergence.The script numerically confirms the exponential decay of errors when 0 < α < 2.

7



AI505 – Spring 2025 Exercise Sheet
Appendix

import torch

from torch import nn

from torch.utils.data import DataLoader

from torchvision import datasets

from torchvision.transforms import ToTensor

import matplotlib.pyplot as plt

import numpy as np

# Download training data from open datasets.

training_data = datasets.MNIST(root=’./data’,

train=True,

transform=ToTensor(),

download=True)

# Downloading test data

test_data = datasets.MNIST(root=’./data’,

train=False,

download=True,

transform=ToTensor())

print("number of training samples: " + str(len(training_data)) + "\n" +

"number of testing samples: " + str(len(test_data)))

print("datatype of the 1st training sample: ", training_data[0][0].type())

print("size of the 1st training sample: ", training_data[0][0].size())

batch_size = 64

# Create data loaders.

train_dataloader = DataLoader(training_data, batch_size=batch_size)

test_dataloader = DataLoader(test_data, batch_size=batch_size)

for X, y in test_dataloader:

print(f"Shape of X [N, C, H, W]: {X.shape}")

print(f"Shape of y: {y.shape} {y.dtype}")

break

device = torch.accelerator.current_accelerator().type if torch.accelerator.is_available()

else "cpu"

print(f"Using {device} device")

# build custom module for logistic regression

# This model will take a -pixel image of handwritten digits as input and classify them

into one of the 10 output classes of digits 0 to 9.

class LogisticRegression(torch.nn.Module):

# build the constructor

def __init__(self):

super(LogisticRegression, self).__init__()

self.linear = torch.nn.Linear(28*28, 10)

# make predictions

def forward(self, x):

y_pred = torch.sigmoid(self.linear(x))

return y_pred

model = LogisticRegression().to(device)

print(model)

# Optimizing the Model Parameters

loss_fn = nn.CrossEntropyLoss()

8



AI505 – Spring 2025 Exercise Sheet
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)

def train(dataloader, model, loss_fn, optimizer):

size = len(dataloader.dataset)

model.train()

losses=[]

for batch, (X, y) in enumerate(dataloader):

X, y = X.to(device), y.to(device)

# Compute prediction error

pred = model(X.view(-1,28*28))

loss = loss_fn(pred, y)

# Backpropagation

loss.backward()

optimizer.step()

optimizer.zero_grad()

losses.append(loss.item())

if batch % 100 == 0:

loss, current = loss.item(), (batch + 1) * len(X.view(-1,28*28))

print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")

return losses

def test(dataloader, model, loss_fn):

size = len(dataloader.dataset)

num_batches = len(dataloader)

model.eval()

losses=[]

test_loss, correct = 0, 0

with torch.no_grad():

for X, y in dataloader:

X, y = X.to(device), y.to(device)

pred = model(X.view(-1,28*28))

test_loss += loss_fn(pred, y).item()

losses.append(test_loss)

correct += (pred.argmax(1) == y).type(torch.float).sum().item()

test_loss /= num_batches

correct /= size

print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n"

)

return losses

epochs = 6

training_losses=[]

test_losses=[]

for t in range(epochs):

print(f"Epoch {t+1}\n-------------------------------")

training_losses += train(train_dataloader, model, loss_fn, optimizer)

test_losses += test(test_dataloader, model, loss_fn)

print("Done!")

#plt.plot(range(epochs), training_losses)

plt.plot( training_losses)

#plt.plot(range(epochs), test_losses)

interval = int(np.ceil(len(training_data)/batch_size))

plt.xticks(range(1,interval*epochs+1,interval), range(1,epochs+1))

plt.xlabel(’Epoch’)

plt.ylabel(’Loss’)

plt.title(’Training Loss Over Epochs’)

plt.show()

9



AI505 – Spring 2025 Exercise Sheet
# Saving Models

torch.save(model.state_dict(), "model.pth")

print("Saved PyTorch Model State to model.pth")

# Loading Models

model = LogisticRegression().to(device)

model.load_state_dict(torch.load("model.pth", weights_only=True))

classes = [

"T-shirt/top",

"Trouser",

"Pullover",

"Dress",

"Coat",

"Sandal",

"Shirt",

"Sneaker",

"Bag",

"Ankle boot",

]

model.eval()

x, y = test_data[0][0], test_data[0][1]

with torch.no_grad():

x = x.to(device)

pred = model(x.flatten())

predicted, actual = classes[pred[0].argmax(0)], classes[y]

print(f’Predicted: "{predicted}", Actual: "{actual}"’)

10


