
Department of Mathematics and Computer ScienceUniversity of Southern Denmark, Odense April 10, 2025Marco Chiarandini

AI505 – Optimization
Sheet 06, Spring 2025
Solution:Included.Exercises with the symbol + are to be done at home before the class. Exercises with the symbol ∗ willbe tackled in class. The remaining exercises are left for self training after the exercise class. Someexercises are from the text book and the number is reported. They have the solution at the end of thebook.
Exercise 1+ (11.1)Suppose you do not know any optimization algorithm for solving a linear program. You decide to evaluateall the vertices and determine, by inspection, which one minimizes the objective function. Give a looseupper bound on the number of possible minimizers you will examine. Furthermore, does this methodproperly handle all linear constrained optimization problems?
Solution:We have chosen to minimize a linear program by evaluating every vertex in the convex polytope formedby the constraints. Every vertex is thus a potential minimizer. Vertices are defined by intersections ofactive constraints. As every inequality constraint can either be active or inactive, and assuming thereare n inequality constraints, we do not need to examine more than 2n combinations of constraints. Thismethod does not correctly report unbounded linear constrained optimiza- tion problems as unbounded.
Exercise 2+ (11.2)If the program in example 11.1 is bounded below, argue that the simplex method must converge.
Solution:The simplex method is guaranteed either to improve with respect to the objective function with eachstep or to preserve the current value of the objective function. Any linear program will have a finitenumber of vertices. So long as a heuristic, such as Bland’s rule, is employed such that cycling does notoccur, the simplex method must converge on a solution.
Exercise 3+ (11.3)Suppose we want to solve:

minimize 6x1 + 5x2subject to 3x1 − 2x2 ≥ 5.

How would we translate this problem into a linear program in equality form with the same minimizer?
Solution:The problem is already in minimization form. Let’s rewrite the inequality in less than equal form:

minimize 6x1 + 5x2subject to − 3x1 + 2x2 ≤ −5.

Since both variables are free to put the problem in a form in which all variables are greater or equal to0 we introduce two new variables for each original one:
1

AI505 – Spring 2025 Exercise Sheet

x1 = s1 − s2
s1, s2 ≥ 0 x2 = s3 − s4

s3, s4 ≥ 0which yields
minimize 6s1 − 6s2 + 5s3 − 5s4subject to − 3s1 + 3s2 + 2s3 − 2s4 ≤ −5

s,s2, s3, s4, s5 ≥ 0
Finally, adding a slack variable s5 ≥ 0:

minimize 6s1 − 6s2 + 5s3 − 5s4subject to − 3s1 + 3s2 + 2s3 − 2s4 + s5 = −5
s,s2, s3, s4, s5 ≥ 0

The simplex algorithm works by selecting a basis and then changing the basis. The initial basis has tobe feasible. This implies that the martix AB is invertible and that the solution x = A−1b ≥ 0. The basisin a problem of size 1 × 5 has size 1.Let’s select s1 to be in basis.
import numpy as np

c = np.array([6, -6,5,-5,0])

A = np.array([[-3,3,2,-2,1]])

b = np.array([-5])

initial basis

B = np.array([0])

N = np.array([1,2,3,4])

#%%

print(c[B])

print(c[N])

#%%

def compute_solution(A,b,B):

A_B_inv = np.linalg.inv(A[:,B])

x_B = A_B_inv @ b

return x_B, A_B_inv

def compute_reduced_costs(A, A_B_inv, b,c,B,N) -> np.array:

muN = c[N]-np.transpose(A_B_inv @ A[:,N]) @ c[B]

return muN

def choose_entering_var(muN, N):

#q = np.argmin(muN)

for i in range(N.shape[0]):

if muN[i]<0:

return N[i]

raise SystemExit("Optimal")

def compute_leaving_var(A,A_B_inv, x_B,B,N,q):

x_prime_q_s = np.zeros(A.shape[0])

for i in range(B.shape[0]):

p=B[i]

x_prime_q = x_B[i] / (A_B_inv @ A[:,q])[i]

x_prime_q_s[i] = x_prime_q

2

AI505 – Spring 2025 Exercise Sheet
i = np.argmin(x_prime_q_s) # leaving var

return (i, B[i], x_prime_q_s[i])

def run(A,b,c,B,N):

niter = 1

while True:

print("Iteration",niter)

x_B, A_B_inv = compute_solution(A,b,B)

muN = compute_reduced_costs(A,A_B_inv,b,c,B,N)

print("Reduced costs",muN)

q = choose_entering_var(muN, N)

print("Entering:",q)

i, p, x_B_p = compute_leaving_var(A,A_B_inv,x_B,B,N,q)

print("Leaving",p)

x_B[i] = x_B_p

B[i] = q

N[N==q] = p

print(B,N, x_B)

niter+=1

run(A,b,c,B,N)

Exercise 4Consider the following problem:
minimize 5x1 + 4x2s.t. 2x1 + 3x2 ≤ 54x1 + x2 ≤ 11

Solve the problem numerically implementing the simplex algorithm.
Solution:

minimize 5x1 + 4x2s.t. 2x1 + 3x2 ≤ 54x1 + x2 ≤ 11
Exercise 5+ (11.4)Suppose your optimization algorithm has found a search direction d and you want to conduct a linesearch. However, you know that there is a linear constraint wT x ≥ 0. How would you modify the linesearch to take this constraint into account? You can assume that your current design point is feasible.
Solution:If the current iterate x is feasible, then wT x = b ≥ 0. We want the next point to maintain feasibility,and thus we require wT (x + αd) ≥ 0. If the obtained value for α is positive, that α is an upper boundon the step length. If the obtained value for α is negative, it can be ignored
Exercise 6+ (11.5)Reformulate the linear program

minimize cT xs.t. Ax ≥ 0
3

AI505 – Spring 2025 Exercise Sheet
Drug A B Craw material (Kg) 5 8 6 600processing time (hours) 3 4 5 400packaging units 2 3 1 200profit 60 100 80 -5

Table 1: Data from the pharmaceutical company
into an unconstrained optimization problem with a log barrier penalty.
Solution:

minimize cT x − µ
∑

i
ln(AT ix)

Exercise 7∗

A pharmaceutical company produces three types of drugs: A, B, and C. These drugs require raw mate-rials, chemical processing time, and packaging units. The goal is to maximize profit, taking into accountrestrictions due to resource availability and production balance.Drug A contributes 60 DKK per unit to the profit, drug B contributes 100 DKK per unit, drug C con-tributes 80 DKK per unit. The consumptions per units of drug of raw materials, chemical processing time,and packaging units are given in Table ?? together with the quantities available. While consumptionsof raw material and processing time cannot exceed the amount available, excess of packaging units isallowed. Extra packaging units can be bought but each extra unit reduces profit at 5 DKK per unitwhile packaging units left can be reused in the next production period and hence contribute positivelyto the profit with the same amount of DKK per unit. Due to contractual obligations, Drug B must beproduced in exactly twice the amount of Drug A.Formulate the problem in linear programming terms. Write first the instantiated model and then theabstract, general model separating model from data.
Solution:To model a problem in LP terms we need to define:• the sets problem components and the known parameters• the decision variables• the objective function• the constraintsDecision Variables• x1 Units of Drug A produced• x2 Units of Drug B produced• x3 Units of Drug C produced• x4 Additional packaging units (can be negative if surplus)Objective Function (Maximization)

maximize Z = 60x1 + 100x2 + 80x3 − 5x4ConstraintsRaw Material Constraint (Inequality) The factory has at most 600 kg of raw material:
5x1 + 8x2 + 6x3 ≤ 600

4

AI505 – Spring 2025 Exercise Sheet
Processing Time Constraint (Inequality) The available chemical processing time is 400 hours:3x1 + 4x2 + 5x3 ≤ 400Packaging Balance Constraint (Equality) The total packaging units used must match available packagingplus extra units: 2x1 + 3x2 + x3 = 200 + x4If x4 > 0, extra packaging was bought.If x4 < 0, excess packaging is left unused.Drug B Production Requirement (Equality) Due to contractual obligations, Drug B must be produced inexactly twice the amount of Drug A:

x2 = 2x1Non-negativity and Unbounded Variables
x1, x2, x3 ≥ 0 is unrestricted in sign
x4 can be negative (if packaging is left over) or positive (if additional units are purchased).
Exercise 8∗

Consider the following linear programming problem:maximize Z = 60x1 + 100x2 + 80x3 − 5x4s.t. 5x1 + 8x2 + 6x3 ≤ 6003x1 + 4x2 + 5x3 ≤ 4002x1 + 3x2 + x3 = 200 + x4
x2 = 2x1
x1, x2, x3 ≥ 0
x4 ∈ RYour tasks:• Transform the problem in standard form• Transform the problem in equality form• Solve the problem numerically with scipy.optimize.linprog. Read this tutorial.

Solution:The standard or the equality forms are already good for scipy.optimize.linprog. However, let’s putthe problem in yet another form that requires less manipulations from the initial given form.minimize − Z = −60x1 − 100x2 − 80x3 + 5x4s.t. 5x1 + 8x2 + 6x3 + 0x4 ≤ 6003x1 + 4x2 + 5x3 + 0x4 ≤ 4002x1 + 3x2 + x3 − x4 = 2002x1 − x2 + 0x3 + 0x4 = 0
x1, x2, x3 ≥ 0
x4 ∈ RThis corresponds to

c = [
−60 −100 −80 5]T

Aub = 5 8 6 03 4 5 0
 bub = [600 400]T

Aeq = 2 3 1 −12 −1 0 0
 beq = [200 0]T

5

https://docs.scipy.org/doc/scipy/tutorial/optimize.html#linear-programming-linprog

AI505 – Spring 2025 Exercise Sheet
import numpy as np

from scipy.optimize import linprog

import array_to_latex as a2l

c = np.array([-60, -100, -80, 5])

A_ub = np.array([[5,8,6,0],

[3,4,5,0]])

b_ub = np.array([600,400])

A_eq = np.array([[2,3,1,-1],

[2,-1,0,0]])

b_eq = np.array([200, 0])

x1_bounds = (0, None)

x2_bounds = (0, None)

x3_bounds = (0, None) # +/- np.inf can be used instead of None

x4_bounds = (-np.inf, +np.inf)

bounds = [x1_bounds, x2_bounds, x3_bounds, x4_bounds]

result = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds, options={"

presolve": False})

print(result)

#%%

message: Optimization terminated successfully. (HiGHS Status 7: Optimal)

success: True

status: 0

fun: -7846.153846153847

x: [1.538e+01 3.077e+01 4.615e+01 -3.077e+01]

nit: 4

lower: residual: [1.538e+01 3.077e+01 4.615e+01 inf]

marginals: [0.000e+00 0.000e+00 0.000e+00 0.000e+00]

upper: residual: [inf inf inf inf]

marginals: [0.000e+00 0.000e+00 0.000e+00 0.000e+00]

eqlin: residual: [0.000e+00 0.000e+00]

marginals: [-5.000e+00 2.436e+00]

ineqlin: residual: [0.000e+00 0.000e+00]

marginals: [-7.051e+00 -6.538e+00]

mip_node_count: 0

mip_dual_bound: 0.0

mip_gap: 0.0

Elements can be accesssed individually. For example the solution can be accessed by:
print(result.x) # solution

print(result.fun) # objective function value

The residuals are the values of the slack variables and tell us whether the corresponding constraint isactive or inactive in the optimal solution.The marginals (or dual values, shadow prices, Lagrange multipliers) are the values of the dual variablesthat can be obtained as a by product from the simplex. They are called marginals because they tellus how much the objective function value would change if we increased by 1 the right hand side of theconstraint. For example, the marginal associated with the second inequality constraint is -6.538, hencewe expect the optimal value of the objective function to decrease by ε if we add a small amount ε tothe right hand side of the second inequality constraint. Indeed:
print(result.x) # solution

print(result.fun) # objective function value

6

AI505 – Spring 2025 Exercise Sheet
-7852.692307692308

7

