
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

May 5, 2025
Marco Chiarandini

AI505 – Optimization

Sheet 09, Spring 2025

Exercises with the symbol + are to be done at home before the class. Exercises with the symbol ∗ will
be tackled in class. The remaining exercises are left for self training after the exercise class. Some
exercises are from the text book and the number is reported. They have the solution at the end of the
book.

Exercise 1+ (19.2)
A Boolean satisfiability problem, often abbreviated SAT, requires determining whether a Boolean design
exists that causes a Boolean-valued objective function to output true. SAT problems were the first to
be proven to belong to the difficult class of NP-complete problems. This means that SAT is at least as
difficult as all other problems whose solutions can be verified in polynomial time.
Consider the Boolean objective function:

f (x) = x1 ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2)

Formulate the problem as an integer linear program. Can any Boolean satisfiability problem be formu-
lated as an integer linear program? Solve the problem with scipy.

Exercise 2∗

Consider max{cT x | Ax = b, x ∈ Zn}. Sometimes the solution of the linear relaxation is already integral.
Can you find a sufficient condition for the matrix A for that to happen?

Exercise 3∗

Consider the following problem:

max x1 − x2

subject to: 2
3x1 + 1

2x2 ≤ 1

x1, x2 ≥ 0
x1, x2 ∈ Z

Derive a Chvatal-Gomory cut.

Exercise 4∗

Apply the linear programming branch and bound algorithm to the following instance of the 0-1 knapsack
problem: values v = [9, 4, 2, 3, 5, 3], weights w = [7, 8, 4, 5, 9, 4] and capacity W = 20.

Exercise 5∗

Consider the problem of selecting students for a swimming medley relay team. In Table 1 we show times
for each swimming style of five students.
We need to choose a student for each of the four swimming styles such that the total relay time is
minimized. Formulate the problem as a MILP and solve it in Python.

Exercise 6
In this exercise, you have to implement the dynamic programming algorithm for TSP with the help of
the code below. How far can you go solving the TSP to optimality by enumeration (implemented below)
and with dynamic programming?
Some typing preliminaries. Cities are points in the 2D plane represented by complex numbers, a builtin
type for a two-dimensional data.

1

AI505 – Spring 2025 Exercise Sheet

Student backstroke breaststroke butterfly freestyle

A 43.5 47.1 48.4 38.2

B 45.5 42.1 49.6 36.8

C 43.4 39.1 42.1 43.2

D 46.5 44.1 44.5 41.2

E 46.3 47.8 50.4 37.2

Table 1:

import functools

import itertools

import pathlib

import random

import time

import math

import re

import matplotlib.pyplot as plt

from collections import Counter, defaultdict, namedtuple

from statistics import mean, median, stdev

from typing import Set, List, Tuple, Iterable, Dict

Basic concepts

City = complex # e.g. City(300, 100)

Cities = frozenset # A set of cities

Tour = list # A list of cities visited, in order

TSP = callable # A TSP algorithm is a callable function

Link = Tuple[City, City] # A city-city link

def distance(A: City, B: City) -> float:

"Distance between two cities"

return abs(A - B)

def shortest(tours: Iterable[Tour]) -> Tour:

"The tour with the smallest tour length."

return min(tours, key=tour_length)

def tour_length(tour: Tour) -> float:

"The total distances of each link in the tour, including the link from last back to

first."

return sum(distance(tour[i], tour[i - 1]) for i in range(len(tour)))

def valid_tour(tour: Tour, cities: Cities) -> bool:

"Does ‘tour‘ visit every city in ‘cities‘ exactly once?"

return Counter(tour) == Counter(cities)

Then we can randomly generate a problem instance as follows.

generate instance

def random_cities(n, seed=1234, width=9999, height=6666) -> Cities:

"Make a set of n cities, sampled uniformly from a (width x height) rectangle."

random.seed(seed)

return Cities(City(random.randrange(width), random.randrange(height))

for c in range(n))

We can find optimal solutions by exhaustive search, ie, enumeration of all permutations of points.

2

AI505 – Spring 2025 Exercise Sheet

Figure 1: https://xkcd.com/399/

def exhaustive_tsp(cities) -> Tour:

"Generate all possible tours of the cities and choose the shortest one."

return shortest(itertools.permutations(cities))

instance = random_cities(8, seed=42, width=100, height=100)

#optimal_tour = exhaustive_tsp(instance)

#print("Optimal tour:", optimal_tour)

#print("Tour length:", tour_length(optimal_tour))

Finally, we can visualize the tour.

Segment = list # A portion of a tour; it does not loop back to the start.

def plot_tour(tour: Tour, style=’bo-’, hilite=’rs’, title=’’):

"Plot every city and link in the tour, and highlight the start city."

scale = 1 + len(tour) ** 0.5 // 10

plt.figure(figsize=((3 * scale, 2 * scale)))

start = tour[0]

plot_segment([*tour, start], style)

plot_segment([start], hilite)

plt.title(title)

def Xs(cities) -> List[float]: "X coordinates"; return [c.real for c in cities]

def Ys(cities) -> List[float]: "Y coordinates"; return [c.imag for c in cities]

def plot_segment(segment: Segment, style=’bo:’):

"Plot every city and link in the segment."

plt.plot(Xs(segment), Ys(segment), style, linewidth=2/3, markersize=4, clip_on=False)

plt.axis(’scaled’); plt.axis(’off’)

#plot_tour(optimal_tour)

3

